Efficient Intermolecular Energy Exchange and Soft Ionization of Water at Nanoplatelet Interfaces

X-ray, energetic photon, and electron irradiation can ionize and electronically excite target atoms and molecules. These excitations undergo complicated relaxation and energy-transfer processes that ultimately determine the manifold system responses to the deposited excess energy. In weakly bound ga...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry letters Vol. 11; no. 23; pp. 10088 - 10093
Main Authors Jones, Brant M, Hu, Hang, Alexsandrov, Alexandr, Smith, William, Clark, Aurora E, Li, Xiaosong, Orlando, Thomas M
Format Journal Article
LanguageEnglish
Published American Chemical Society 03.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:X-ray, energetic photon, and electron irradiation can ionize and electronically excite target atoms and molecules. These excitations undergo complicated relaxation and energy-transfer processes that ultimately determine the manifold system responses to the deposited excess energy. In weakly bound gas- and solution-phase samples, intermolecular Coulomb decay (ICD) and electron-transfer-mediated decay (ETMD) can occur with neighboring atoms or molecules, leading to efficient transfer of the excess energy to the surroundings. In ionic solids such as metal oxides, intra- and interatomic Auger decay produces localized final states that lead to lattice damage and typically the removal of cations from the substrate. The relative importance of Auger-stimulated damage (ASD) versus ICD and ETMD in microsolvated nanoparticle interfaces is not known. Though ASD is generally expected, essentially no lattice damage resulting from the ionization and electronic excitation of microsolvated boehmite (AlOOH) nanoplatelets has been detected. Rather efficient energy transfer and soft ionization of interfacial water molecules has been observed. This is likely a general phenomenon at gas–oxyhydroxide nanoparticle interfaces where the density of states of the ionized chemisorbed species significantly overlaps with the core hole states of the solid.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.0c02911