Carbon Nitride–Aromatic Diimide–Graphene Nanohybrids: Metal-Free Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion with 0.2% Efficiency

Solar-to-chemical energy conversion is a challenging subject for renewable energy storage. In the past 40 years, overall water splitting into H2 and O2 by semiconductor photocatalysis has been studied extensively; however, they need noble metals and extreme care to avoid explosion of the mixed gases...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 138; no. 31; pp. 10019 - 10025
Main Authors Kofuji, Yusuke, Isobe, Yuki, Shiraishi, Yasuhiro, Sakamoto, Hirokatsu, Tanaka, Shunsuke, Ichikawa, Satoshi, Hirai, Takayuki
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Solar-to-chemical energy conversion is a challenging subject for renewable energy storage. In the past 40 years, overall water splitting into H2 and O2 by semiconductor photocatalysis has been studied extensively; however, they need noble metals and extreme care to avoid explosion of the mixed gases. Here we report that generating hydrogen peroxide (H2O2) from water and O2 by organic semiconductor photocatalysts could provide a new basis for clean energy storage without metal and explosion risk. We found that carbon nitride–aromatic diimide–graphene nanohybrids prepared by simple hydrothermal–calcination procedure produce H2O2 from pure water and O2 under visible light (λ > 420 nm). Photoexcitation of the semiconducting carbon nitride–aromatic diimide moiety transfers their conduction band electrons to graphene and enhances charge separation. The valence band holes on the semiconducting moiety oxidize water, while the electrons on the graphene moiety promote selective two-electron reduction of O2. This metal-free system produces H2O2 with solar-to-chemical energy conversion efficiency 0.20%, comparable to the highest levels achieved by powdered water-splitting photocatalysts.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.6b05806