Elucidating the Variability in the Hexabromocyclododecane Diastereomer Profile in the Global Environment
Hexabromocyclododecane (HBCDD) is a hazardous flame retardant subject to international regulation. Whereas γ-HBCDD is a dominant component in the technical HBCDD mixture, the diastereomer profile in environmental samples shows substantial temporal and spatial variations, ranging from γ- to α-HBCDD-d...
Saved in:
Published in | Environmental science & technology Vol. 52; no. 18; pp. 10532 - 10542 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Hexabromocyclododecane (HBCDD) is a hazardous flame retardant subject to international regulation. Whereas γ-HBCDD is a dominant component in the technical HBCDD mixture, the diastereomer profile in environmental samples shows substantial temporal and spatial variations, ranging from γ- to α-HBCDD-dominant. To explain such variability, we simulate the global emissions and fate of HBCDD diastereomers, using a dynamic substance flow analysis model (CiP-CAFE) coupled to a multimedia environmental fate model (BETR-Global). Our modeling results indicate that, as of 2015, 340–1000 tonnes of HBCDD have been emitted globally, with slightly more γ-HBCDD (50%–65%) than α-HBCDD (30%–50%). Emissions of γ-HBCDD primarily originate from production and other industrial processes, whereas those of α-HBCDD are mainly associated with the use and end-of-life disposal of HBCDD-containing products. Presently, α-HBCDD dominates the contamination in the air of populated areas, while γ-HBCDD is more abundant in remote background areas and in regions with HCBDD production and processing facilities. Globally, the relative abundance of α-HBCDD is anticipated to increase after production of HBCDD is banned. Due to isomerization, α-HBCDD accumulates to a larger extent than γ-HBCDD in Arctic surface media. Since α-HBCDD is more persistent and bioaccumulative than other diastereomers, isomerization has bearing on the potential environmental and health impacts on a global scale. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0013-936X 1520-5851 1520-5851 |
DOI: | 10.1021/acs.est.8b03443 |