A Potential Sn-Based Hybrid Perovskite Ferroelectric Semiconductor
Ferroelectric semiconductors, combining semiconduction, spontaneous polarization, and photoinduced excitation, show great promise to enhance the performance of solar cells, pressure sensors, and photodetectors. Particularly, organic–inorganic lead halide perovskite ferroelectrics have been explored...
Saved in:
Published in | Journal of the American Chemical Society Vol. 142; no. 3; pp. 1159 - 1163 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0002-7863 1520-5126 1520-5126 |
DOI | 10.1021/jacs.9b11341 |
Cover
Loading…
Abstract | Ferroelectric semiconductors, combining semiconduction, spontaneous polarization, and photoinduced excitation, show great promise to enhance the performance of solar cells, pressure sensors, and photodetectors. Particularly, organic–inorganic lead halide perovskite ferroelectrics have been explored for their prominent carrier transport properties and structural tunability. However, a high concentration of toxic Pb is a stumbling block for their further application. Here, we present a lead-free hybrid perovskite semiconductor, (C4H9NH3)2(NH3CH3)2Sn3Br10 (1), which exhibits a large spontaneous polarization of 11.76 μC cm–2 at room temperature. Significantly, 1 presents a spontaneous polar ordering transition, similar to the better-known perovskite ferroelectrics, and exhibits ferroelectric phase transition behaviors. To our best knowledge, 1 is the first example of a Sn-based hybrid perovskite semiconductor featuring ferroelectric performance. Mechanistic studies reveal that such ferroelectricity can be attributable to the synergistic effects of ordering of organic cations and stereochemically active lone-pair electrons inducing distortion of inorganic octahedra. This work provides an effective way to explore “green” ferroelectric semiconductors with potentially enhanced energy conversion efficiency. |
---|---|
AbstractList | Ferroelectric semiconductors, combining semiconduction, spontaneous polarization, and photoinduced excitation, show great promise to enhance the performance of solar cells, pressure sensors, and photodetectors. Particularly, organic–inorganic lead halide perovskite ferroelectrics have been explored for their prominent carrier transport properties and structural tunability. However, a high concentration of toxic Pb is a stumbling block for their further application. Here, we present a lead-free hybrid perovskite semiconductor, (C₄H₉NH₃)₂(NH₃CH₃)₂Sn₃Br₁₀ (1), which exhibits a large spontaneous polarization of 11.76 μC cm–² at room temperature. Significantly, 1 presents a spontaneous polar ordering transition, similar to the better-known perovskite ferroelectrics, and exhibits ferroelectric phase transition behaviors. To our best knowledge, 1 is the first example of a Sn-based hybrid perovskite semiconductor featuring ferroelectric performance. Mechanistic studies reveal that such ferroelectricity can be attributable to the synergistic effects of ordering of organic cations and stereochemically active lone-pair electrons inducing distortion of inorganic octahedra. This work provides an effective way to explore “green” ferroelectric semiconductors with potentially enhanced energy conversion efficiency. Ferroelectric semiconductors, combining semiconduction, spontaneous polarization, and photoinduced excitation, show great promise to enhance the performance of solar cells, pressure sensors, and photodetectors. Particularly, organic–inorganic lead halide perovskite ferroelectrics have been explored for their prominent carrier transport properties and structural tunability. However, a high concentration of toxic Pb is a stumbling block for their further application. Here, we present a lead-free hybrid perovskite semiconductor, (C4H9NH3)2(NH3CH3)2Sn3Br10 (1), which exhibits a large spontaneous polarization of 11.76 μC cm–2 at room temperature. Significantly, 1 presents a spontaneous polar ordering transition, similar to the better-known perovskite ferroelectrics, and exhibits ferroelectric phase transition behaviors. To our best knowledge, 1 is the first example of a Sn-based hybrid perovskite semiconductor featuring ferroelectric performance. Mechanistic studies reveal that such ferroelectricity can be attributable to the synergistic effects of ordering of organic cations and stereochemically active lone-pair electrons inducing distortion of inorganic octahedra. This work provides an effective way to explore “green” ferroelectric semiconductors with potentially enhanced energy conversion efficiency. Ferroelectric semiconductors, combining semiconduction, spontaneous polarization, and photoinduced excitation, show great promise to enhance the performance of solar cells, pressure sensors, and photodetectors. Particularly, organic-inorganic lead halide perovskite ferroelectrics have been explored for their prominent carrier transport properties and structural tunability. However, a high concentration of toxic Pb is a stumbling block for their further application. Here, we present a lead-free hybrid perovskite semiconductor, (C4H9NH3)2(NH3CH3)2Sn3Br10 (1), which exhibits a large spontaneous polarization of 11.76 μC cm-2 at room temperature. Significantly, 1 presents a spontaneous polar ordering transition, similar to the better-known perovskite ferroelectrics, and exhibits ferroelectric phase transition behaviors. To our best knowledge, 1 is the first example of a Sn-based hybrid perovskite semiconductor featuring ferroelectric performance. Mechanistic studies reveal that such ferroelectricity can be attributable to the synergistic effects of ordering of organic cations and stereochemically active lone-pair electrons inducing distortion of inorganic octahedra. This work provides an effective way to explore "green" ferroelectric semiconductors with potentially enhanced energy conversion efficiency.Ferroelectric semiconductors, combining semiconduction, spontaneous polarization, and photoinduced excitation, show great promise to enhance the performance of solar cells, pressure sensors, and photodetectors. Particularly, organic-inorganic lead halide perovskite ferroelectrics have been explored for their prominent carrier transport properties and structural tunability. However, a high concentration of toxic Pb is a stumbling block for their further application. Here, we present a lead-free hybrid perovskite semiconductor, (C4H9NH3)2(NH3CH3)2Sn3Br10 (1), which exhibits a large spontaneous polarization of 11.76 μC cm-2 at room temperature. Significantly, 1 presents a spontaneous polar ordering transition, similar to the better-known perovskite ferroelectrics, and exhibits ferroelectric phase transition behaviors. To our best knowledge, 1 is the first example of a Sn-based hybrid perovskite semiconductor featuring ferroelectric performance. Mechanistic studies reveal that such ferroelectricity can be attributable to the synergistic effects of ordering of organic cations and stereochemically active lone-pair electrons inducing distortion of inorganic octahedra. This work provides an effective way to explore "green" ferroelectric semiconductors with potentially enhanced energy conversion efficiency. Ferroelectric semiconductors, combining semiconduction, spontaneous polarization, and photoinduced excitation, show great promise to enhance the performance of solar cells, pressure sensors, and photodetectors. Particularly, organic-inorganic lead halide perovskite ferroelectrics have been explored for their prominent carrier transport properties and structural tunability. However, a high concentration of toxic Pb is a stumbling block for their further application. Here, we present a lead-free hybrid perovskite semiconductor, (C H NH ) (NH CH ) Sn Br ( ), which exhibits a large spontaneous polarization of 11.76 μC cm at room temperature. Significantly, presents a spontaneous polar ordering transition, similar to the better-known perovskite ferroelectrics, and exhibits ferroelectric phase transition behaviors. To our best knowledge, is the first example of a Sn-based hybrid perovskite semiconductor featuring ferroelectric performance. Mechanistic studies reveal that such ferroelectricity can be attributable to the synergistic effects of ordering of organic cations and stereochemically active lone-pair electrons inducing distortion of inorganic octahedra. This work provides an effective way to explore "green" ferroelectric semiconductors with potentially enhanced energy conversion efficiency. |
Author | Sun, Zhihua Li, Lina Zhang, Xinyuan Zhao, Sangen Wang, Sasa He, Chao Liu, Xitao Luo, Junhua Hong, Maochun Ji, Chengmin |
AuthorAffiliation | State Key Laboratory of Structural Chemistry University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: State Key Laboratory of Structural Chemistry – name: University of Chinese Academy of Sciences |
Author_xml | – sequence: 1 givenname: Lina orcidid: 0000-0002-9736-7479 surname: Li fullname: Li, Lina organization: State Key Laboratory of Structural Chemistry – sequence: 2 givenname: Xitao orcidid: 0000-0003-0826-1005 surname: Liu fullname: Liu, Xitao organization: State Key Laboratory of Structural Chemistry – sequence: 3 givenname: Chao orcidid: 0000-0003-2565-138X surname: He fullname: He, Chao organization: State Key Laboratory of Structural Chemistry – sequence: 4 givenname: Sasa surname: Wang fullname: Wang, Sasa organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Chengmin surname: Ji fullname: Ji, Chengmin organization: State Key Laboratory of Structural Chemistry – sequence: 6 givenname: Xinyuan surname: Zhang fullname: Zhang, Xinyuan organization: University of Chinese Academy of Sciences – sequence: 7 givenname: Zhihua orcidid: 0000-0003-2659-3927 surname: Sun fullname: Sun, Zhihua organization: State Key Laboratory of Structural Chemistry – sequence: 8 givenname: Sangen orcidid: 0000-0002-1190-684X surname: Zhao fullname: Zhao, Sangen organization: State Key Laboratory of Structural Chemistry – sequence: 9 givenname: Maochun orcidid: 0000-0002-1347-6046 surname: Hong fullname: Hong, Maochun organization: State Key Laboratory of Structural Chemistry – sequence: 10 givenname: Junhua orcidid: 0000-0002-7673-7979 surname: Luo fullname: Luo, Junhua email: jhluo@fjirsm.ac.cn organization: State Key Laboratory of Structural Chemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31904946$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1LAzEQxYNUbK3ePMsePbg1X5vdPbbFWkGwUD2HbHYCqdtNTbJC_3u3WC-ieBpm-L3H8N45GrSuBYSuCJ4QTMndRukwKStCGCcnaEQyitOMUDFAI4wxTfNCsCE6D2HTr5wW5AwNGSkxL7kYodk0WbkIbbSqSdZtOlMB6mS5r7ytkxV49xHebIRkAd47aEBHb3Wyhq3Vrq07HZ2_QKdGNQEuj3OMXhf3L_Nl-vT88DifPqWKlTymQlS0NliZmtFMlwJnnOm8oKaqK8xVSbAGnhuFa6Whyg1oSoEREAYbzAvDxujmy3fn3XsHIcqtDRqaRrXguiBpWWQZFmWe_Y8yxinPcyZ69PqIdtUWarnzdqv8Xn5H1AP0C9DeheDBSG2jita10SvbSILloQd56EEee-hFtz9E375_4Md_D8eN63zbB_k7-gkhCZZ9 |
CitedBy_id | crossref_primary_10_1007_s12274_023_6357_8 crossref_primary_10_1016_j_inoche_2020_107932 crossref_primary_10_1021_jacs_3c03997 crossref_primary_10_1039_D3CE00087G crossref_primary_10_1364_OE_485279 crossref_primary_10_1002_adma_202314292 crossref_primary_10_1039_D2NJ00303A crossref_primary_10_1039_C9CS00504H crossref_primary_10_1002_adma_202205410 crossref_primary_10_1002_asia_202200502 crossref_primary_10_1021_acs_chemmater_2c00107 crossref_primary_10_1002_ange_202407934 crossref_primary_10_1039_D0TA08780G crossref_primary_10_1039_D1QM00329A crossref_primary_10_1002_zaac_202200316 crossref_primary_10_1002_adfm_202207854 crossref_primary_10_1021_acs_nanolett_2c00787 crossref_primary_10_1016_j_nantod_2020_101062 crossref_primary_10_1140_epjp_s13360_023_04474_4 crossref_primary_10_1002_aelm_202200415 crossref_primary_10_1039_D0DT04415F crossref_primary_10_1016_j_ccr_2021_214180 crossref_primary_10_1039_D2MH01429G crossref_primary_10_1021_jacs_0c00315 crossref_primary_10_1002_asia_202201206 crossref_primary_10_1002_anie_202407934 crossref_primary_10_1021_acs_chemrev_0c01006 crossref_primary_10_1093_nsr_nwaa232 crossref_primary_10_1002_adma_202403455 crossref_primary_10_1016_j_cclet_2022_108051 crossref_primary_10_1016_j_cej_2021_129740 crossref_primary_10_1007_s11426_022_1389_6 crossref_primary_10_1002_adma_202104107 crossref_primary_10_1021_acs_inorgchem_0c03309 crossref_primary_10_1038_s41570_021_00335_9 crossref_primary_10_1021_acsami_0c16180 crossref_primary_10_1021_acs_inorgchem_0c01404 crossref_primary_10_1021_acs_jpcc_2c06818 crossref_primary_10_1016_j_nanoen_2025_110774 crossref_primary_10_1021_acs_jpcc_2c03984 crossref_primary_10_1021_jacs_1c08281 crossref_primary_10_1021_acs_cgd_3c00769 crossref_primary_10_1021_acs_chemmater_2c02660 crossref_primary_10_1088_1361_6463_abb047 crossref_primary_10_1039_D1TC00278C crossref_primary_10_1021_acs_jpclett_3c00566 crossref_primary_10_1063_5_0039082 crossref_primary_10_1126_sciadv_abj5881 crossref_primary_10_1021_acs_jpclett_1c01473 crossref_primary_10_1002_chem_202001266 crossref_primary_10_1063_5_0027776 crossref_primary_10_1039_D3CE00931A crossref_primary_10_1021_acs_inorgchem_1c02536 crossref_primary_10_1016_j_matdes_2020_108868 crossref_primary_10_1021_jacs_1c06108 crossref_primary_10_1140_epjp_s13360_022_02522_z crossref_primary_10_1093_nsr_nwac240 crossref_primary_10_1002_ange_202306853 crossref_primary_10_1016_j_trechm_2021_05_003 crossref_primary_10_1002_chem_202102550 crossref_primary_10_1002_adom_202100003 crossref_primary_10_1002_smll_202306502 crossref_primary_10_1021_acs_chemrev_3c00214 crossref_primary_10_1039_D4QI03257H crossref_primary_10_3389_fchem_2024_1468434 crossref_primary_10_1039_D0SC06112C crossref_primary_10_1002_adfm_202102793 crossref_primary_10_1021_acs_jpcc_1c03980 crossref_primary_10_1088_2053_1591_ad594d crossref_primary_10_1007_s11426_023_1899_y crossref_primary_10_1016_j_cej_2023_146805 crossref_primary_10_1039_D1TA09537D crossref_primary_10_1002_inf2_12602 crossref_primary_10_1021_acs_inorgchem_4c00052 crossref_primary_10_1002_adma_202004999 crossref_primary_10_1039_D1CE01615F crossref_primary_10_1021_acs_cgd_4c00323 crossref_primary_10_1038_s41427_023_00485_w crossref_primary_10_1021_acs_chemmater_1c01663 crossref_primary_10_1021_jacs_2c07535 crossref_primary_10_1002_anie_202306853 |
Cites_doi | 10.1126/science.aav3057 10.1038/ncomms8338 10.1038/nature08128 10.1002/adma.201901843 10.1016/j.nanoen.2018.05.058 10.1002/anie.201601933 10.1038/nmat3754 10.1002/adfm.201000390 10.1143/JPSJ.27.387 10.1073/pnas.1802427116 10.1021/jacs.7b00492 10.1038/nature18306 10.1103/PhysRevB.81.172103 10.1021/jacs.8b12948 10.1126/science.286.5441.945 10.1103/PhysRevB.73.045210 10.1038/nature12622 10.1021/jacs.7b01815 10.1103/PhysRevLett.121.017402 10.1021/jacs.7b06013 10.1002/anie.201705836 10.1038/nphoton.2014.82 10.1002/adma.201808088 10.1126/science.aai8535 10.1021/jacs.9b10048 10.1038/369467a0 10.1021/jacs.8b04014 10.1103/PhysRevLett.107.147601 10.1002/adma.201806661 10.1126/sciadv.aax5080 10.1021/jacs.9b02558 10.1021/acs.nanolett.8b04326 10.1038/nmat4150 10.1021/jz502666j 10.1126/science.1168636 10.1038/s41586-018-0336-3 10.1016/j.nanoen.2019.01.095 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.9b11341 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 1163 |
ExternalDocumentID | 31904946 10_1021_jacs_9b11341 c711760716 |
Genre | Journal Article |
GroupedDBID | - .K2 02 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM YIN 7X8 AAYWT 7S9 L.6 |
ID | FETCH-LOGICAL-a394t-66b2df0afd325c960543c782fbdb04a910ce47fa0daceb7fec22e31e6f0f048f3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 04:23:52 EDT 2025 Tue Aug 05 10:33:47 EDT 2025 Wed Feb 19 02:31:12 EST 2025 Tue Jul 01 03:21:56 EDT 2025 Thu Apr 24 23:02:06 EDT 2025 Thu Aug 27 22:10:36 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a394t-66b2df0afd325c960543c782fbdb04a910ce47fa0daceb7fec22e31e6f0f048f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7673-7979 0000-0003-2659-3927 0000-0003-0826-1005 0000-0002-9736-7479 0000-0003-2565-138X 0000-0002-1347-6046 0000-0002-1190-684X |
PMID | 31904946 |
PQID | 2334247736 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2985506975 proquest_miscellaneous_2334247736 pubmed_primary_31904946 crossref_citationtrail_10_1021_jacs_9b11341 crossref_primary_10_1021_jacs_9b11341 acs_journals_10_1021_jacs_9b11341 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-22 |
PublicationDateYYYYMMDD | 2020-01-22 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref17/cit17b ref3/cit3 ref1/cit1e ref18/cit18 ref1/cit1d ref19/cit19c ref17/cit17a ref19/cit19b ref16/cit16 ref8/cit8 ref2/cit2 ref1/cit1a ref1/cit1c ref1/cit1b ref5/cit5b ref10/cit10 ref5/cit5a ref6/cit6d ref4/cit4a ref6/cit6e ref4/cit4b ref6/cit6f Lines M. E. (ref14/cit14a) 1977 ref4/cit4c ref12/cit12 ref14/cit14b ref15/cit15 ref11/cit11b ref11/cit11a ref13/cit13 ref4/cit4d ref19/cit19a ref4/cit4e ref6/cit6a ref6/cit6b ref6/cit6c ref7/cit7 |
References_xml | – ident: ref4/cit4e doi: 10.1126/science.aav3057 – ident: ref6/cit6c doi: 10.1038/ncomms8338 – ident: ref15/cit15 doi: 10.1038/nature08128 – ident: ref9/cit9 doi: 10.1002/adma.201901843 – ident: ref3/cit3 doi: 10.1016/j.nanoen.2018.05.058 – ident: ref6/cit6d doi: 10.1002/anie.201601933 – ident: ref19/cit19b doi: 10.1038/nmat3754 – ident: ref17/cit17a doi: 10.1002/adfm.201000390 – ident: ref18/cit18 doi: 10.1143/JPSJ.27.387 – ident: ref1/cit1c doi: 10.1073/pnas.1802427116 – ident: ref4/cit4d doi: 10.1021/jacs.7b00492 – ident: ref4/cit4a doi: 10.1038/nature18306 – ident: ref17/cit17b doi: 10.1103/PhysRevB.81.172103 – ident: ref8/cit8 doi: 10.1021/jacs.8b12948 – ident: ref10/cit10 doi: 10.1126/science.286.5441.945 – ident: ref14/cit14b doi: 10.1103/PhysRevB.73.045210 – ident: ref2/cit2 doi: 10.1038/nature12622 – ident: ref11/cit11b doi: 10.1021/jacs.7b01815 – ident: ref1/cit1b doi: 10.1103/PhysRevLett.121.017402 – ident: ref16/cit16 doi: 10.1021/jacs.7b06013 – volume-title: Principles and Applications of Ferroelectrics and Related Materials year: 1977 ident: ref14/cit14a – ident: ref6/cit6b doi: 10.1002/anie.201705836 – ident: ref11/cit11a doi: 10.1038/nphoton.2014.82 – ident: ref6/cit6e doi: 10.1002/adma.201808088 – ident: ref4/cit4c doi: 10.1126/science.aai8535 – ident: ref6/cit6f doi: 10.1021/jacs.9b10048 – ident: ref12/cit12 doi: 10.1038/369467a0 – ident: ref6/cit6a doi: 10.1021/jacs.8b04014 – ident: ref13/cit13 doi: 10.1103/PhysRevLett.107.147601 – ident: ref5/cit5b doi: 10.1002/adma.201806661 – ident: ref19/cit19c doi: 10.1126/sciadv.aax5080 – ident: ref7/cit7 doi: 10.1021/jacs.9b02558 – ident: ref1/cit1e doi: 10.1021/acs.nanolett.8b04326 – ident: ref4/cit4b doi: 10.1038/nmat4150 – ident: ref5/cit5a doi: 10.1021/jz502666j – ident: ref1/cit1a doi: 10.1126/science.1168636 – ident: ref19/cit19a doi: 10.1038/s41586-018-0336-3 – ident: ref1/cit1d doi: 10.1016/j.nanoen.2019.01.095 |
SSID | ssj0004281 |
Score | 2.5725021 |
Snippet | Ferroelectric semiconductors, combining semiconduction, spontaneous polarization, and photoinduced excitation, show great promise to enhance the performance of... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1159 |
SubjectTerms | ambient temperature cations electrons energy conversion geometry lead phase transition semiconductors solar cells stereochemistry synergism toxicity |
Title | A Potential Sn-Based Hybrid Perovskite Ferroelectric Semiconductor |
URI | http://dx.doi.org/10.1021/jacs.9b11341 https://www.ncbi.nlm.nih.gov/pubmed/31904946 https://www.proquest.com/docview/2334247736 https://www.proquest.com/docview/2985506975 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HvTi-1FfpKAnSUl2N7vJsS3W4kEKtdBb2CeIkkiSCvrr3c2jYqXqNUxIdnY2801m5hsArkKluRBYughKG6AE3OU-Y66AUocyND5ClgWyD2Q0xfezYPZVILucwYeWH0jk3Yj7lnlsHWxAYhC2hUCDyVf_Iwz9BubSkKC6wH35buuARP7dAa1AlaV3Ge6Au6ZHpyoqee7OC94VHz8pG_948V2wXQNMp1dZxB5YU8k-2Bw0c90OQL_njNPCFgkZsUni9o0fk87o3bZuOWOVpW-5_aPrDFWWpdWUnCfhTGwRfZpYdtg0OwTT4e3jYOTWkxRchiJcuIRwo3uPaYlgIEzQEmAkDDbQXHIPMwMZhMJUM08yoTjVSkCokK-I9rQ54hodgVaSJuoEODKCjCnmYao8rKkXSoOoOMdaQhFhpNugY9Yd1ychj8skNzRBhr1aa6MNbpotiEVNRW4nYryskL5eSL9WFBwr5DrNbsZGpTbxwRKVzvMYIoQhphSRX2QiS-1GIhq0wXFlCounmc-UpdEhp_9Y2xnYgjYk93wXwnPQKrK5ujC4peCXpdF-Aqnm55I |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB7RcKAXKC2UlLYYiZ6Qkb27fh1DRBQoREgBiZu1T6lqZSPbQYJf3xnHCQIpiOtqbO_T883OzDcAR6l1SmthfM4MGSiR8lUopa-ZcalJUUeYNkB2Eo9vxcVddNclq1MuDHaixjfVrRP_mV2AaIKwMVMhEZB9gHXEIYwi-AbD6XMaJEvDBdpN0ph3ce6vnyY9pOuXemgFuGyVzGgLJsvutbElf09mjTrRT6-YG9_d_0-w2cFNbzDfH9uwZovPsDFcVHn7AqcD77psKGQIxaaFf4pazXjjR0rk8q5tVT7UdL_rjWxVlfOaOX-0N6WQ-rIgrtiy2oHb0dnNcOx3dRV8yTPR-HGscCUC6QxnkUYTJhJcI1JwyqhASAQQ2orEycBIbVXirGbM8tDGLnB44B3fhV5RFnYPPJMxKa0MRGID4ZIgNYivlBLOMJ0J7vpwiOPOu3NR563Lm6HJQa3dbPTheLESue6Iyak-xr8V0r-W0vdzQo4VcoeLRc1xSskNIgtbzuqccS6YSBIevyGTEdFbnCVRH77Od8Tya_jTIlKd-Ns7xnYAG-Obq8v88nzyex8-MjLWg9Bn7Dv0mmpmfyCiadTPdh__BwJU7_M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9tAEB6SFJK-9Exbt2krQ_pUZKTd1fXouDXugTFxAnkTe0JJkIwkF9pf3xlZcknAJX2VRtLOHppvdma_AThNrVNaC-NzZshBiZSvQil9zYxLTYo2wrQJsvN4dim-XkVXexD2Z2GwETW-qW6D-LSqV8Z1DANEFYQ3MhUSCdk-PKCIHWXxjSfLv0chWRr2iDdJY97lut99mmyRrm_boh0AszU008dwvm1im19yPVo3aqR_32Fv_C8dnsCjDnZ64808eQp7tngGR5O-2ttzOBt7i7Kh1CEUWxb-GVo3481-0YEub2Gr8mdN-7ze1FZVuamd80N7S0qtLwvijC2rY7icfr6YzPyuvoIveSYaP44VjkggneEs0ujKRIJrRAxOGRUIiUBCW5E4GRiprUqc1YxZHtrYBQ4XvuMv4KAoC_sKPJMxKa0MRGID4ZIgNYizlBLOMJ0J7gYwRL3zbn3UeRv6Zuh60NWuNwbwsR-NXHcE5VQn42aH9Iet9GpDzLFDbtgPbI5dSuEQWdhyXeeMc8FEkvD4HzIZEb7FWRIN4OVmVmy_hj8vIteJX99Dt_dwuPg0zb9_mX97Aw8Z-exB6DN2AgdNtbZvEdg06l07lf8A3prydg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Potential+Sn-Based+Hybrid+Perovskite+Ferroelectric+Semiconductor&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Li%2C+Lina&rft.au=Liu%2C+Xitao&rft.au=He%2C+Chao&rft.au=Wang%2C+Sasa&rft.date=2020-01-22&rft.issn=1520-5126&rft.volume=142&rft.issue=3+p.1159-1163&rft.spage=1159&rft.epage=1163&rft_id=info:doi/10.1021%2Fjacs.9b11341&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |