A Potential Sn-Based Hybrid Perovskite Ferroelectric Semiconductor

Ferroelectric semiconductors, combining semiconduction, spontaneous polarization, and photoinduced excitation, show great promise to enhance the performance of solar cells, pressure sensors, and photodetectors. Particularly, organic–inorganic lead halide perovskite ferroelectrics have been explored...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 142; no. 3; pp. 1159 - 1163
Main Authors Li, Lina, Liu, Xitao, He, Chao, Wang, Sasa, Ji, Chengmin, Zhang, Xinyuan, Sun, Zhihua, Zhao, Sangen, Hong, Maochun, Luo, Junhua
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.01.2020
Subjects
Online AccessGet full text
ISSN0002-7863
1520-5126
1520-5126
DOI10.1021/jacs.9b11341

Cover

Loading…
Abstract Ferroelectric semiconductors, combining semiconduction, spontaneous polarization, and photoinduced excitation, show great promise to enhance the performance of solar cells, pressure sensors, and photodetectors. Particularly, organic–inorganic lead halide perovskite ferroelectrics have been explored for their prominent carrier transport properties and structural tunability. However, a high concentration of toxic Pb is a stumbling block for their further application. Here, we present a lead-free hybrid perovskite semiconductor, (C4H9NH3)2­(NH3CH3)2Sn3Br10 (1), which exhibits a large spontaneous polarization of 11.76 μC cm–2 at room temperature. Significantly, 1 presents a spontaneous polar ordering transition, similar to the better-known perovskite ferroelectrics, and exhibits ferroelectric phase transition behaviors. To our best knowledge, 1 is the first example of a Sn-based hybrid perovskite semiconductor featuring ferroelectric performance. Mechanistic studies reveal that such ferroelectricity can be attributable to the synergistic effects of ordering of organic cations and stereochemically active lone-pair electrons inducing distortion of inorganic octahedra. This work provides an effective way to explore “green” ferroelectric semiconductors with potentially enhanced energy conversion efficiency.
AbstractList Ferroelectric semiconductors, combining semiconduction, spontaneous polarization, and photoinduced excitation, show great promise to enhance the performance of solar cells, pressure sensors, and photodetectors. Particularly, organic–inorganic lead halide perovskite ferroelectrics have been explored for their prominent carrier transport properties and structural tunability. However, a high concentration of toxic Pb is a stumbling block for their further application. Here, we present a lead-free hybrid perovskite semiconductor, (C₄H₉NH₃)₂(NH₃CH₃)₂Sn₃Br₁₀ (1), which exhibits a large spontaneous polarization of 11.76 μC cm–² at room temperature. Significantly, 1 presents a spontaneous polar ordering transition, similar to the better-known perovskite ferroelectrics, and exhibits ferroelectric phase transition behaviors. To our best knowledge, 1 is the first example of a Sn-based hybrid perovskite semiconductor featuring ferroelectric performance. Mechanistic studies reveal that such ferroelectricity can be attributable to the synergistic effects of ordering of organic cations and stereochemically active lone-pair electrons inducing distortion of inorganic octahedra. This work provides an effective way to explore “green” ferroelectric semiconductors with potentially enhanced energy conversion efficiency.
Ferroelectric semiconductors, combining semiconduction, spontaneous polarization, and photoinduced excitation, show great promise to enhance the performance of solar cells, pressure sensors, and photodetectors. Particularly, organic–inorganic lead halide perovskite ferroelectrics have been explored for their prominent carrier transport properties and structural tunability. However, a high concentration of toxic Pb is a stumbling block for their further application. Here, we present a lead-free hybrid perovskite semiconductor, (C4H9NH3)2­(NH3CH3)2Sn3Br10 (1), which exhibits a large spontaneous polarization of 11.76 μC cm–2 at room temperature. Significantly, 1 presents a spontaneous polar ordering transition, similar to the better-known perovskite ferroelectrics, and exhibits ferroelectric phase transition behaviors. To our best knowledge, 1 is the first example of a Sn-based hybrid perovskite semiconductor featuring ferroelectric performance. Mechanistic studies reveal that such ferroelectricity can be attributable to the synergistic effects of ordering of organic cations and stereochemically active lone-pair electrons inducing distortion of inorganic octahedra. This work provides an effective way to explore “green” ferroelectric semiconductors with potentially enhanced energy conversion efficiency.
Ferroelectric semiconductors, combining semiconduction, spontaneous polarization, and photoinduced excitation, show great promise to enhance the performance of solar cells, pressure sensors, and photodetectors. Particularly, organic-inorganic lead halide perovskite ferroelectrics have been explored for their prominent carrier transport properties and structural tunability. However, a high concentration of toxic Pb is a stumbling block for their further application. Here, we present a lead-free hybrid perovskite semiconductor, (C4H9NH3)2(NH3CH3)2Sn3Br10 (1), which exhibits a large spontaneous polarization of 11.76 μC cm-2 at room temperature. Significantly, 1 presents a spontaneous polar ordering transition, similar to the better-known perovskite ferroelectrics, and exhibits ferroelectric phase transition behaviors. To our best knowledge, 1 is the first example of a Sn-based hybrid perovskite semiconductor featuring ferroelectric performance. Mechanistic studies reveal that such ferroelectricity can be attributable to the synergistic effects of ordering of organic cations and stereochemically active lone-pair electrons inducing distortion of inorganic octahedra. This work provides an effective way to explore "green" ferroelectric semiconductors with potentially enhanced energy conversion efficiency.Ferroelectric semiconductors, combining semiconduction, spontaneous polarization, and photoinduced excitation, show great promise to enhance the performance of solar cells, pressure sensors, and photodetectors. Particularly, organic-inorganic lead halide perovskite ferroelectrics have been explored for their prominent carrier transport properties and structural tunability. However, a high concentration of toxic Pb is a stumbling block for their further application. Here, we present a lead-free hybrid perovskite semiconductor, (C4H9NH3)2(NH3CH3)2Sn3Br10 (1), which exhibits a large spontaneous polarization of 11.76 μC cm-2 at room temperature. Significantly, 1 presents a spontaneous polar ordering transition, similar to the better-known perovskite ferroelectrics, and exhibits ferroelectric phase transition behaviors. To our best knowledge, 1 is the first example of a Sn-based hybrid perovskite semiconductor featuring ferroelectric performance. Mechanistic studies reveal that such ferroelectricity can be attributable to the synergistic effects of ordering of organic cations and stereochemically active lone-pair electrons inducing distortion of inorganic octahedra. This work provides an effective way to explore "green" ferroelectric semiconductors with potentially enhanced energy conversion efficiency.
Ferroelectric semiconductors, combining semiconduction, spontaneous polarization, and photoinduced excitation, show great promise to enhance the performance of solar cells, pressure sensors, and photodetectors. Particularly, organic-inorganic lead halide perovskite ferroelectrics have been explored for their prominent carrier transport properties and structural tunability. However, a high concentration of toxic Pb is a stumbling block for their further application. Here, we present a lead-free hybrid perovskite semiconductor, (C H NH ) (NH CH ) Sn Br ( ), which exhibits a large spontaneous polarization of 11.76 μC cm at room temperature. Significantly, presents a spontaneous polar ordering transition, similar to the better-known perovskite ferroelectrics, and exhibits ferroelectric phase transition behaviors. To our best knowledge, is the first example of a Sn-based hybrid perovskite semiconductor featuring ferroelectric performance. Mechanistic studies reveal that such ferroelectricity can be attributable to the synergistic effects of ordering of organic cations and stereochemically active lone-pair electrons inducing distortion of inorganic octahedra. This work provides an effective way to explore "green" ferroelectric semiconductors with potentially enhanced energy conversion efficiency.
Author Sun, Zhihua
Li, Lina
Zhang, Xinyuan
Zhao, Sangen
Wang, Sasa
He, Chao
Liu, Xitao
Luo, Junhua
Hong, Maochun
Ji, Chengmin
AuthorAffiliation State Key Laboratory of Structural Chemistry
University of Chinese Academy of Sciences
AuthorAffiliation_xml – name: State Key Laboratory of Structural Chemistry
– name: University of Chinese Academy of Sciences
Author_xml – sequence: 1
  givenname: Lina
  orcidid: 0000-0002-9736-7479
  surname: Li
  fullname: Li, Lina
  organization: State Key Laboratory of Structural Chemistry
– sequence: 2
  givenname: Xitao
  orcidid: 0000-0003-0826-1005
  surname: Liu
  fullname: Liu, Xitao
  organization: State Key Laboratory of Structural Chemistry
– sequence: 3
  givenname: Chao
  orcidid: 0000-0003-2565-138X
  surname: He
  fullname: He, Chao
  organization: State Key Laboratory of Structural Chemistry
– sequence: 4
  givenname: Sasa
  surname: Wang
  fullname: Wang, Sasa
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Chengmin
  surname: Ji
  fullname: Ji, Chengmin
  organization: State Key Laboratory of Structural Chemistry
– sequence: 6
  givenname: Xinyuan
  surname: Zhang
  fullname: Zhang, Xinyuan
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Zhihua
  orcidid: 0000-0003-2659-3927
  surname: Sun
  fullname: Sun, Zhihua
  organization: State Key Laboratory of Structural Chemistry
– sequence: 8
  givenname: Sangen
  orcidid: 0000-0002-1190-684X
  surname: Zhao
  fullname: Zhao, Sangen
  organization: State Key Laboratory of Structural Chemistry
– sequence: 9
  givenname: Maochun
  orcidid: 0000-0002-1347-6046
  surname: Hong
  fullname: Hong, Maochun
  organization: State Key Laboratory of Structural Chemistry
– sequence: 10
  givenname: Junhua
  orcidid: 0000-0002-7673-7979
  surname: Luo
  fullname: Luo, Junhua
  email: jhluo@fjirsm.ac.cn
  organization: State Key Laboratory of Structural Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31904946$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1LAzEQxYNUbK3ePMsePbg1X5vdPbbFWkGwUD2HbHYCqdtNTbJC_3u3WC-ieBpm-L3H8N45GrSuBYSuCJ4QTMndRukwKStCGCcnaEQyitOMUDFAI4wxTfNCsCE6D2HTr5wW5AwNGSkxL7kYodk0WbkIbbSqSdZtOlMB6mS5r7ytkxV49xHebIRkAd47aEBHb3Wyhq3Vrq07HZ2_QKdGNQEuj3OMXhf3L_Nl-vT88DifPqWKlTymQlS0NliZmtFMlwJnnOm8oKaqK8xVSbAGnhuFa6Whyg1oSoEREAYbzAvDxujmy3fn3XsHIcqtDRqaRrXguiBpWWQZFmWe_Y8yxinPcyZ69PqIdtUWarnzdqv8Xn5H1AP0C9DeheDBSG2jita10SvbSILloQd56EEee-hFtz9E375_4Md_D8eN63zbB_k7-gkhCZZ9
CitedBy_id crossref_primary_10_1007_s12274_023_6357_8
crossref_primary_10_1016_j_inoche_2020_107932
crossref_primary_10_1021_jacs_3c03997
crossref_primary_10_1039_D3CE00087G
crossref_primary_10_1364_OE_485279
crossref_primary_10_1002_adma_202314292
crossref_primary_10_1039_D2NJ00303A
crossref_primary_10_1039_C9CS00504H
crossref_primary_10_1002_adma_202205410
crossref_primary_10_1002_asia_202200502
crossref_primary_10_1021_acs_chemmater_2c00107
crossref_primary_10_1002_ange_202407934
crossref_primary_10_1039_D0TA08780G
crossref_primary_10_1039_D1QM00329A
crossref_primary_10_1002_zaac_202200316
crossref_primary_10_1002_adfm_202207854
crossref_primary_10_1021_acs_nanolett_2c00787
crossref_primary_10_1016_j_nantod_2020_101062
crossref_primary_10_1140_epjp_s13360_023_04474_4
crossref_primary_10_1002_aelm_202200415
crossref_primary_10_1039_D0DT04415F
crossref_primary_10_1016_j_ccr_2021_214180
crossref_primary_10_1039_D2MH01429G
crossref_primary_10_1021_jacs_0c00315
crossref_primary_10_1002_asia_202201206
crossref_primary_10_1002_anie_202407934
crossref_primary_10_1021_acs_chemrev_0c01006
crossref_primary_10_1093_nsr_nwaa232
crossref_primary_10_1002_adma_202403455
crossref_primary_10_1016_j_cclet_2022_108051
crossref_primary_10_1016_j_cej_2021_129740
crossref_primary_10_1007_s11426_022_1389_6
crossref_primary_10_1002_adma_202104107
crossref_primary_10_1021_acs_inorgchem_0c03309
crossref_primary_10_1038_s41570_021_00335_9
crossref_primary_10_1021_acsami_0c16180
crossref_primary_10_1021_acs_inorgchem_0c01404
crossref_primary_10_1021_acs_jpcc_2c06818
crossref_primary_10_1016_j_nanoen_2025_110774
crossref_primary_10_1021_acs_jpcc_2c03984
crossref_primary_10_1021_jacs_1c08281
crossref_primary_10_1021_acs_cgd_3c00769
crossref_primary_10_1021_acs_chemmater_2c02660
crossref_primary_10_1088_1361_6463_abb047
crossref_primary_10_1039_D1TC00278C
crossref_primary_10_1021_acs_jpclett_3c00566
crossref_primary_10_1063_5_0039082
crossref_primary_10_1126_sciadv_abj5881
crossref_primary_10_1021_acs_jpclett_1c01473
crossref_primary_10_1002_chem_202001266
crossref_primary_10_1063_5_0027776
crossref_primary_10_1039_D3CE00931A
crossref_primary_10_1021_acs_inorgchem_1c02536
crossref_primary_10_1016_j_matdes_2020_108868
crossref_primary_10_1021_jacs_1c06108
crossref_primary_10_1140_epjp_s13360_022_02522_z
crossref_primary_10_1093_nsr_nwac240
crossref_primary_10_1002_ange_202306853
crossref_primary_10_1016_j_trechm_2021_05_003
crossref_primary_10_1002_chem_202102550
crossref_primary_10_1002_adom_202100003
crossref_primary_10_1002_smll_202306502
crossref_primary_10_1021_acs_chemrev_3c00214
crossref_primary_10_1039_D4QI03257H
crossref_primary_10_3389_fchem_2024_1468434
crossref_primary_10_1039_D0SC06112C
crossref_primary_10_1002_adfm_202102793
crossref_primary_10_1021_acs_jpcc_1c03980
crossref_primary_10_1088_2053_1591_ad594d
crossref_primary_10_1007_s11426_023_1899_y
crossref_primary_10_1016_j_cej_2023_146805
crossref_primary_10_1039_D1TA09537D
crossref_primary_10_1002_inf2_12602
crossref_primary_10_1021_acs_inorgchem_4c00052
crossref_primary_10_1002_adma_202004999
crossref_primary_10_1039_D1CE01615F
crossref_primary_10_1021_acs_cgd_4c00323
crossref_primary_10_1038_s41427_023_00485_w
crossref_primary_10_1021_acs_chemmater_1c01663
crossref_primary_10_1021_jacs_2c07535
crossref_primary_10_1002_anie_202306853
Cites_doi 10.1126/science.aav3057
10.1038/ncomms8338
10.1038/nature08128
10.1002/adma.201901843
10.1016/j.nanoen.2018.05.058
10.1002/anie.201601933
10.1038/nmat3754
10.1002/adfm.201000390
10.1143/JPSJ.27.387
10.1073/pnas.1802427116
10.1021/jacs.7b00492
10.1038/nature18306
10.1103/PhysRevB.81.172103
10.1021/jacs.8b12948
10.1126/science.286.5441.945
10.1103/PhysRevB.73.045210
10.1038/nature12622
10.1021/jacs.7b01815
10.1103/PhysRevLett.121.017402
10.1021/jacs.7b06013
10.1002/anie.201705836
10.1038/nphoton.2014.82
10.1002/adma.201808088
10.1126/science.aai8535
10.1021/jacs.9b10048
10.1038/369467a0
10.1021/jacs.8b04014
10.1103/PhysRevLett.107.147601
10.1002/adma.201806661
10.1126/sciadv.aax5080
10.1021/jacs.9b02558
10.1021/acs.nanolett.8b04326
10.1038/nmat4150
10.1021/jz502666j
10.1126/science.1168636
10.1038/s41586-018-0336-3
10.1016/j.nanoen.2019.01.095
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.9b11341
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 1163
ExternalDocumentID 31904946
10_1021_jacs_9b11341
c711760716
Genre Journal Article
GroupedDBID -
.K2
02
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
NPM
YIN
7X8
AAYWT
7S9
L.6
ID FETCH-LOGICAL-a394t-66b2df0afd325c960543c782fbdb04a910ce47fa0daceb7fec22e31e6f0f048f3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 04:23:52 EDT 2025
Tue Aug 05 10:33:47 EDT 2025
Wed Feb 19 02:31:12 EST 2025
Tue Jul 01 03:21:56 EDT 2025
Thu Apr 24 23:02:06 EDT 2025
Thu Aug 27 22:10:36 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a394t-66b2df0afd325c960543c782fbdb04a910ce47fa0daceb7fec22e31e6f0f048f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7673-7979
0000-0003-2659-3927
0000-0003-0826-1005
0000-0002-9736-7479
0000-0003-2565-138X
0000-0002-1347-6046
0000-0002-1190-684X
PMID 31904946
PQID 2334247736
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_2985506975
proquest_miscellaneous_2334247736
pubmed_primary_31904946
crossref_citationtrail_10_1021_jacs_9b11341
crossref_primary_10_1021_jacs_9b11341
acs_journals_10_1021_jacs_9b11341
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-22
PublicationDateYYYYMMDD 2020-01-22
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref17/cit17b
ref3/cit3
ref1/cit1e
ref18/cit18
ref1/cit1d
ref19/cit19c
ref17/cit17a
ref19/cit19b
ref16/cit16
ref8/cit8
ref2/cit2
ref1/cit1a
ref1/cit1c
ref1/cit1b
ref5/cit5b
ref10/cit10
ref5/cit5a
ref6/cit6d
ref4/cit4a
ref6/cit6e
ref4/cit4b
ref6/cit6f
Lines M. E. (ref14/cit14a) 1977
ref4/cit4c
ref12/cit12
ref14/cit14b
ref15/cit15
ref11/cit11b
ref11/cit11a
ref13/cit13
ref4/cit4d
ref19/cit19a
ref4/cit4e
ref6/cit6a
ref6/cit6b
ref6/cit6c
ref7/cit7
References_xml – ident: ref4/cit4e
  doi: 10.1126/science.aav3057
– ident: ref6/cit6c
  doi: 10.1038/ncomms8338
– ident: ref15/cit15
  doi: 10.1038/nature08128
– ident: ref9/cit9
  doi: 10.1002/adma.201901843
– ident: ref3/cit3
  doi: 10.1016/j.nanoen.2018.05.058
– ident: ref6/cit6d
  doi: 10.1002/anie.201601933
– ident: ref19/cit19b
  doi: 10.1038/nmat3754
– ident: ref17/cit17a
  doi: 10.1002/adfm.201000390
– ident: ref18/cit18
  doi: 10.1143/JPSJ.27.387
– ident: ref1/cit1c
  doi: 10.1073/pnas.1802427116
– ident: ref4/cit4d
  doi: 10.1021/jacs.7b00492
– ident: ref4/cit4a
  doi: 10.1038/nature18306
– ident: ref17/cit17b
  doi: 10.1103/PhysRevB.81.172103
– ident: ref8/cit8
  doi: 10.1021/jacs.8b12948
– ident: ref10/cit10
  doi: 10.1126/science.286.5441.945
– ident: ref14/cit14b
  doi: 10.1103/PhysRevB.73.045210
– ident: ref2/cit2
  doi: 10.1038/nature12622
– ident: ref11/cit11b
  doi: 10.1021/jacs.7b01815
– ident: ref1/cit1b
  doi: 10.1103/PhysRevLett.121.017402
– ident: ref16/cit16
  doi: 10.1021/jacs.7b06013
– volume-title: Principles and Applications of Ferroelectrics and Related Materials
  year: 1977
  ident: ref14/cit14a
– ident: ref6/cit6b
  doi: 10.1002/anie.201705836
– ident: ref11/cit11a
  doi: 10.1038/nphoton.2014.82
– ident: ref6/cit6e
  doi: 10.1002/adma.201808088
– ident: ref4/cit4c
  doi: 10.1126/science.aai8535
– ident: ref6/cit6f
  doi: 10.1021/jacs.9b10048
– ident: ref12/cit12
  doi: 10.1038/369467a0
– ident: ref6/cit6a
  doi: 10.1021/jacs.8b04014
– ident: ref13/cit13
  doi: 10.1103/PhysRevLett.107.147601
– ident: ref5/cit5b
  doi: 10.1002/adma.201806661
– ident: ref19/cit19c
  doi: 10.1126/sciadv.aax5080
– ident: ref7/cit7
  doi: 10.1021/jacs.9b02558
– ident: ref1/cit1e
  doi: 10.1021/acs.nanolett.8b04326
– ident: ref4/cit4b
  doi: 10.1038/nmat4150
– ident: ref5/cit5a
  doi: 10.1021/jz502666j
– ident: ref1/cit1a
  doi: 10.1126/science.1168636
– ident: ref19/cit19a
  doi: 10.1038/s41586-018-0336-3
– ident: ref1/cit1d
  doi: 10.1016/j.nanoen.2019.01.095
SSID ssj0004281
Score 2.5725021
Snippet Ferroelectric semiconductors, combining semiconduction, spontaneous polarization, and photoinduced excitation, show great promise to enhance the performance of...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1159
SubjectTerms ambient temperature
cations
electrons
energy conversion
geometry
lead
phase transition
semiconductors
solar cells
stereochemistry
synergism
toxicity
Title A Potential Sn-Based Hybrid Perovskite Ferroelectric Semiconductor
URI http://dx.doi.org/10.1021/jacs.9b11341
https://www.ncbi.nlm.nih.gov/pubmed/31904946
https://www.proquest.com/docview/2334247736
https://www.proquest.com/docview/2985506975
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HvTi-1FfpKAnSUl2N7vJsS3W4kEKtdBb2CeIkkiSCvrr3c2jYqXqNUxIdnY2801m5hsArkKluRBYughKG6AE3OU-Y66AUocyND5ClgWyD2Q0xfezYPZVILucwYeWH0jk3Yj7lnlsHWxAYhC2hUCDyVf_Iwz9BubSkKC6wH35buuARP7dAa1AlaV3Ge6Au6ZHpyoqee7OC94VHz8pG_948V2wXQNMp1dZxB5YU8k-2Bw0c90OQL_njNPCFgkZsUni9o0fk87o3bZuOWOVpW-5_aPrDFWWpdWUnCfhTGwRfZpYdtg0OwTT4e3jYOTWkxRchiJcuIRwo3uPaYlgIEzQEmAkDDbQXHIPMwMZhMJUM08yoTjVSkCokK-I9rQ54hodgVaSJuoEODKCjCnmYao8rKkXSoOoOMdaQhFhpNugY9Yd1ychj8skNzRBhr1aa6MNbpotiEVNRW4nYryskL5eSL9WFBwr5DrNbsZGpTbxwRKVzvMYIoQhphSRX2QiS-1GIhq0wXFlCounmc-UpdEhp_9Y2xnYgjYk93wXwnPQKrK5ujC4peCXpdF-Aqnm55I
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB7RcKAXKC2UlLYYiZ6Qkb27fh1DRBQoREgBiZu1T6lqZSPbQYJf3xnHCQIpiOtqbO_T883OzDcAR6l1SmthfM4MGSiR8lUopa-ZcalJUUeYNkB2Eo9vxcVddNclq1MuDHaixjfVrRP_mV2AaIKwMVMhEZB9gHXEIYwi-AbD6XMaJEvDBdpN0ph3ce6vnyY9pOuXemgFuGyVzGgLJsvutbElf09mjTrRT6-YG9_d_0-w2cFNbzDfH9uwZovPsDFcVHn7AqcD77psKGQIxaaFf4pazXjjR0rk8q5tVT7UdL_rjWxVlfOaOX-0N6WQ-rIgrtiy2oHb0dnNcOx3dRV8yTPR-HGscCUC6QxnkUYTJhJcI1JwyqhASAQQ2orEycBIbVXirGbM8tDGLnB44B3fhV5RFnYPPJMxKa0MRGID4ZIgNYivlBLOMJ0J7vpwiOPOu3NR563Lm6HJQa3dbPTheLESue6Iyak-xr8V0r-W0vdzQo4VcoeLRc1xSskNIgtbzuqccS6YSBIevyGTEdFbnCVRH77Od8Tya_jTIlKd-Ns7xnYAG-Obq8v88nzyex8-MjLWg9Bn7Dv0mmpmfyCiadTPdh__BwJU7_M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9tAEB6SFJK-9Exbt2krQ_pUZKTd1fXouDXugTFxAnkTe0JJkIwkF9pf3xlZcknAJX2VRtLOHppvdma_AThNrVNaC-NzZshBiZSvQil9zYxLTYo2wrQJsvN4dim-XkVXexD2Z2GwETW-qW6D-LSqV8Z1DANEFYQ3MhUSCdk-PKCIHWXxjSfLv0chWRr2iDdJY97lut99mmyRrm_boh0AszU008dwvm1im19yPVo3aqR_32Fv_C8dnsCjDnZ64808eQp7tngGR5O-2ttzOBt7i7Kh1CEUWxb-GVo3481-0YEub2Gr8mdN-7ze1FZVuamd80N7S0qtLwvijC2rY7icfr6YzPyuvoIveSYaP44VjkggneEs0ujKRIJrRAxOGRUIiUBCW5E4GRiprUqc1YxZHtrYBQ4XvuMv4KAoC_sKPJMxKa0MRGID4ZIgNYizlBLOMJ0J7gYwRL3zbn3UeRv6Zuh60NWuNwbwsR-NXHcE5VQn42aH9Iet9GpDzLFDbtgPbI5dSuEQWdhyXeeMc8FEkvD4HzIZEb7FWRIN4OVmVmy_hj8vIteJX99Dt_dwuPg0zb9_mX97Aw8Z-exB6DN2AgdNtbZvEdg06l07lf8A3prydg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Potential+Sn-Based+Hybrid+Perovskite+Ferroelectric+Semiconductor&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Li%2C+Lina&rft.au=Liu%2C+Xitao&rft.au=He%2C+Chao&rft.au=Wang%2C+Sasa&rft.date=2020-01-22&rft.issn=1520-5126&rft.volume=142&rft.issue=3+p.1159-1163&rft.spage=1159&rft.epage=1163&rft_id=info:doi/10.1021%2Fjacs.9b11341&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon