A Potential Sn-Based Hybrid Perovskite Ferroelectric Semiconductor

Ferroelectric semiconductors, combining semiconduction, spontaneous polarization, and photoinduced excitation, show great promise to enhance the performance of solar cells, pressure sensors, and photodetectors. Particularly, organic–inorganic lead halide perovskite ferroelectrics have been explored...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 142; no. 3; pp. 1159 - 1163
Main Authors Li, Lina, Liu, Xitao, He, Chao, Wang, Sasa, Ji, Chengmin, Zhang, Xinyuan, Sun, Zhihua, Zhao, Sangen, Hong, Maochun, Luo, Junhua
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ferroelectric semiconductors, combining semiconduction, spontaneous polarization, and photoinduced excitation, show great promise to enhance the performance of solar cells, pressure sensors, and photodetectors. Particularly, organic–inorganic lead halide perovskite ferroelectrics have been explored for their prominent carrier transport properties and structural tunability. However, a high concentration of toxic Pb is a stumbling block for their further application. Here, we present a lead-free hybrid perovskite semiconductor, (C4H9NH3)2­(NH3CH3)2Sn3Br10 (1), which exhibits a large spontaneous polarization of 11.76 μC cm–2 at room temperature. Significantly, 1 presents a spontaneous polar ordering transition, similar to the better-known perovskite ferroelectrics, and exhibits ferroelectric phase transition behaviors. To our best knowledge, 1 is the first example of a Sn-based hybrid perovskite semiconductor featuring ferroelectric performance. Mechanistic studies reveal that such ferroelectricity can be attributable to the synergistic effects of ordering of organic cations and stereochemically active lone-pair electrons inducing distortion of inorganic octahedra. This work provides an effective way to explore “green” ferroelectric semiconductors with potentially enhanced energy conversion efficiency.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.9b11341