Electronic Nose for Improved Environmental Methane Monitoring
Reducing emissions of the key greenhouse gas methane (CH4) is increasingly highlighted as being important to mitigate climate change. Effective emission reductions require cost-effective ways to measure CH4 to detect sources and verify that mitigation efforts work. We present here a novel approach t...
Saved in:
Published in | Environmental science & technology Vol. 58; no. 1; pp. 352 - 361 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
09.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Reducing emissions of the key greenhouse gas methane (CH4) is increasingly highlighted as being important to mitigate climate change. Effective emission reductions require cost-effective ways to measure CH4 to detect sources and verify that mitigation efforts work. We present here a novel approach to measure methane at atmospheric concentrations by means of a low-cost electronic nose strategy where the readings of a few sensors are combined, leading to errors down to 33 ppb and coefficients of determination, R 2, up to 0.91 for in situ measurements. Data from methane, temperature, humidity, and atmospheric pressure sensors were used in customized machine learning models to account for environmental cross-effects and quantify methane in the ppm–ppb range both in indoor and outdoor conditions. The electronic nose strategy was confirmed to be versatile with improved accuracy when more reference data were supplied to the quantification model. Our results pave the way toward the use of networks of low-cost sensor systems for the monitoring of greenhouse gases. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0013-936X 1520-5851 1520-5851 |
DOI: | 10.1021/acs.est.3c06945 |