High-Performance Organic Laser Semiconductor Enabling Efficient Light-Emitting Transistors and Low-Threshold Microcavity Lasers

An organic light-emitting transistor (OLET) is a candidate device architecture for developing electrically pumped organic solid-state lasers, but it remains a critical challenge because of the lack of organic semiconductors that simultaneously possess a high solid-state emission efficiency (Φs), a h...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 22; no. 14; pp. 5803 - 5809
Main Authors Yin, Fan, De, Jianbo, Liu, Meihui, Huang, Han, Geng, Hua, Yao, Jiannian, Liao, Qing, Fu, Hongbing
Format Journal Article
LanguageEnglish
Published American Chemical Society 27.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An organic light-emitting transistor (OLET) is a candidate device architecture for developing electrically pumped organic solid-state lasers, but it remains a critical challenge because of the lack of organic semiconductors that simultaneously possess a high solid-state emission efficiency (Φs), a high and balanced ambipolar mobility (μh,e), and a large stimulated emission cross-section. Here, we designed a molecule of 4,4′-bis­(2-dibenzothiophenyl-vinyl)-biphenyl (DBTVB) and prepared its ultrathin single-crystal microplates with herringbone packing arrangements, which achieve balanced mobilities of μh = 3.55 ± 0.5 and μe = 2.37 ± 0.5 cm2 V–1 s–1, a high Φs of 85 ± 3%, and striking low-threshold laser characteristics. Theoretical and experimental investigations reveal that a strong electronic coupling and a small reorganization energy ensure efficient charge transport; meanwhile, the exciton-vibration effect and negligible π–π orbital overlap give rise to highly emissive H-aggregates and facilitate laser emission. Furthermore, OLET-based DBTVB crystals offer an internal quantum efficiency approaching 100% and a record-high electroluminescence external quantum efficiency of 4.03%.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.2c01345