Probable swirls detected as photometric anomalies in Oceanus Procellarum

Images of the lunar nearside obtained by telescopes of Maidanak Observatory (Uzbekistan) and Simeiz Observatory (Crimea, Ukraine) equipped with Canon CMOS cameras and Sony CCD LineScan camera were used to study photometric properties of the lunar nearside in several spectral bands. A wide range of l...

Full description

Saved in:
Bibliographic Details
Published inIcarus (New York, N.Y. 1962) Vol. 208; no. 1; pp. 20 - 30
Main Authors Shkuratov, Yu, Kaydash, V., Gerasimenko, S., Opanasenko, N., Velikodsky, Yu, Korokhin, V., Videen, G., Pieters, C.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.07.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Images of the lunar nearside obtained by telescopes of Maidanak Observatory (Uzbekistan) and Simeiz Observatory (Crimea, Ukraine) equipped with Canon CMOS cameras and Sony CCD LineScan camera were used to study photometric properties of the lunar nearside in several spectral bands. A wide range of lunar phase angles was covered, and the method of phase ratios to assess the steepness of the phase function at different phase angles is applied. We found several areas with photometric anomalies in the south-west portion of the lunar disk that we refer to as Oceanus Procellarum anomalies. The areas being unique on the lunar nearside do not obey the inverse correlation between albedo and phase-curve slope, demonstrating high phase-curve slopes at intermediate albedo. Low-Sun images acquired with Lunar Orbiter IV and Apollo-16 cameras do not reveal anomalous topography of the regions, at least for scales larger than several tens of meters. The areas also do not have any thermal inertia, radar (70 and 3.8 cm), magnetic, or chemical/mineral peculiarities. On the other hand they exhibit a polarimetric signature that we interpret to be due to the presence of a porous regolith upper layer consisting of dust particles. The anomalies may be interpreted as regions of very fresh shallow regolith disturbances caused by impacts of meteoroid swarms consisting of rather small impactors. This origin is similar to one of the hypotheses for the origin of lunar swirls like the Reiner-γ formation. The photometric difference between the shallow and pervasive (Reiner-γ class) swirls is that the latter appear to have a significant amount of immature soils in the upper surface layers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0019-1035
1090-2643
DOI:10.1016/j.icarus.2010.01.028