Unraveling the Importance of Noncovalent Interactions in Asymmetric Hydroformylation Reactions

For catalytic asymmetric hydroformylation (AHF) of alkenes to chiral aldehydes, though a topic of high interest, the contemporary developments remain largely empirical owing to rather limited molecular insights on the origin of enantioselectivity. Given this gap, herein, we present the mechanistic d...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 142; no. 40; pp. 17079 - 17092
Main Authors Dangat, Yuvraj, Popli, Sahil, Sunoj, Raghavan B
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 07.10.2020
Online AccessGet full text

Cover

Loading…
More Information
Summary:For catalytic asymmetric hydroformylation (AHF) of alkenes to chiral aldehydes, though a topic of high interest, the contemporary developments remain largely empirical owing to rather limited molecular insights on the origin of enantioselectivity. Given this gap, herein, we present the mechanistic details of Rh-(S,S)-YanPhos-catalyzed AHF of α-methylstyrene, as obtained through a comprehensive DFT (ω-B97XD and M06) study. The challenges with the double axially chiral YanPhos, bearing an N-benzyl BINOL-phosphoramidite and a BINAP-bis­(3,5-t-Bu-aryl)­phosphine, are addressed through exhaustive conformational sampling. The C–H···π, π···π, and lone pair···π noncovalent interactions (NCIs) between the N-benzyl and the rest of the chiral ligand limit the N-benzyl conformers. Similarly, the C–H···π and π···π NCIs between the chiral catalyst and α-methylstyrene render the si-face binding to the Rh-center more preferred over the re-face. The transition state (TS) for the regiocontrolling migratory insertion, triggered by the Rh-hydride addition to the alkene, to the more substituted α-carbon is 3.6 kcal/mol lower than that to the β-carbon, thus favoring the linear chiral aldehyde over the achiral branched alternative. In the linear pathway, the TS for the hydride addition to the si-face is 1.5 kcal/mol lower than that to the re-face, with a predicted ee of 85% for the S aldehyde (expt. 87%). The energetic span analysis reveals the reductive elimination as the turnover determining step for the preferred S linear aldehyde. These molecular insights could become valuable for exploiting AHF reactions for substituted alkenes and for eventual industrial implementation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.0c06942