Disulfide Cyclized Tripeptide Analogues of Angiotensin IV as Potent and Selective Inhibitors of Insulin-Regulated Aminopeptidase (IRAP)
The insulin-regulated aminopeptidase (IRAP) localized in areas of the brain associated with memory and learning is emerging as a new promising therapeutic target for the treatment of memory dysfunctions. The angiotensin II metabolite angiotensin IV (Ang IV, Val1-Tyr2-Ile3-His4-Pro5-Phe6) binds with...
Saved in:
Published in | Journal of medicinal chemistry Vol. 53; no. 22; pp. 8059 - 8071 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
WASHINGTON
American Chemical Society
25.11.2010
Amer Chemical Soc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The insulin-regulated aminopeptidase (IRAP) localized in areas of the brain associated with memory and learning is emerging as a new promising therapeutic target for the treatment of memory dysfunctions. The angiotensin II metabolite angiotensin IV (Ang IV, Val1-Tyr2-Ile3-His4-Pro5-Phe6) binds with high affinity to IRAP and inhibits this aminopeptidase (K i = 62.4 nM). Furthermore, Ang IV has been demonstrated to enhance cognition in animal models and is believed to play an important role in cognitive processes. It is herein reported that displacement of the C-terminal tripeptide His4-Pro5-Phe6 with a phenylacetic acid functionality combined with a constrained macrocyclic system in the N-terminal affords potent IRAP inhibitors that are less peptidic in character than the hexapeptide Ang IV. Configurational analysis of three pairs of diastereomeric Ang IV analogues was performed using a combination of solution NMR spectroscopic methods, Monte Carlo conformational searches, and NAMFIS calculations. The compounds encompassing l-amino acids only (4, 8, and 12) showed significantly higher bioactivity compared to their lld-epimers (5, 9, and 13). The best inhibitors in the series, compounds 8 and 12, incorporating a 13- and 14-membered disulfide ring system, respectively, and both with a β3-homotyrosine residue (β3hTyr) replacing Tyr2, exhibit K i values of 3.3 and 5.2 nM, respectively. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-2623 1520-4804 1520-4804 |
DOI: | 10.1021/jm100793t |