Controlling factors of gullying in the Maracujá Catchment, southeastern Brazil
Hundreds of gullies (‘voçorocas’) of huge dimensions (up to 400–500 m long, 150 m wide and 50 m deep) are very common in the small Maracujá Catchment in southeastern Brazil. These erosional features, which occur with an uneven intensity throughout the area, started due to bad soil management practic...
Saved in:
Published in | Earth surface processes and landforms Vol. 30; no. 11; pp. 1369 - 1385 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.10.2005
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Hundreds of gullies (‘voçorocas’) of huge dimensions (up to 400–500 m long, 150 m wide and 50 m deep) are very common in the small Maracujá Catchment in southeastern Brazil. These erosional features, which occur with an uneven intensity throughout the area, started due to bad soil management practices at the beginning of European settlement, at the end of the 17th century, and nowadays are still evolving, but at a slower rate. As surface soils are usually very resistant to erosion, the outcrop of the more erodible basement saprolites seems to be an essential condition for their beginning. An analysis of well known erosion controlling factors was performed, aiming to explain the beginning and evolution of these gullies and to understand the reasons for their spatial distribution. Data shows that geology and, mainly, geomorphology are the main controlling factors, since gullies tend to be concentrated in basement rock areas with lower relief (domain 2) of Maracujá Catchment, mainly at the fringes of broad and flat interfluves. At the detailed scale (1:10 000), gullies are more common in amphitheatre‐like headwater hollows that frequently represent upper Quaternary gullies (paleogullies), which demonstrate the recurrence of channel erosion. So, gullies occur in areas of thicker saprolites (domain 2), in places with a natural concentration of surface and underground water (hollows). Saprolites of the preserved, non‐eroded hollows are usually pressurized (confined aquifer) due to a thick seal of Quaternary clay layer, in a similar configuration to the ones found in hollows of mass movement (mudflow) sites in southeastern Brazil. Therefore, the erosion of the resistant soils by human activities, such as road cuts and trenches (‘valos’), or their mobilization by mudflow movements, seem to be likely mechanisms of gullying initiation. Afterwards, gullies evolve by a combination of surface and underground processes, such as wash and tunnel erosion and falls and slumps of gully walls. Copyright © 2005 John Wiley & Sons, Ltd. |
---|---|
Bibliography: | ArticleID:ESP1193 ark:/67375/WNG-73W7Z1HR-4 FAPEMIG istex:BE220B9324AA41EA32CB343B870B0CC0CC1F7D9B ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0197-9337 1096-9837 |
DOI: | 10.1002/esp.1193 |