Validation of an analytical model of groundwater velocity based on laboratory test and numerical simulation

Surface water–groundwater exchange affects the material and energy transfer of rivers and adjacent riparian zones. As an intuitive carrier of energy, temperature can effectively reflect the spatial and temporal variation of surface water–groundwater exchange process. In this paper, the influence of...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental earth sciences Vol. 82; no. 10; p. 258
Main Authors Ren, Jie, Zhang, Jinjin, Wang, Dabo
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Surface water–groundwater exchange affects the material and energy transfer of rivers and adjacent riparian zones. As an intuitive carrier of energy, temperature can effectively reflect the spatial and temporal variation of surface water–groundwater exchange process. In this paper, the influence of water head variation and sand sample uniformity on its temperature field and seepage field is studied through a one-dimensional sand column laboratory test. To verify the accuracy of the one-dimensional vertical heat analysis model, the vertical seepage velocity measured in the indoor test is compared with the vertical submerged exchange rate calculated by the four analysis models. The results show that the Hatch analytical solution, Keery analytical solution, McCallum analytical solution and Luce analytical solution calculated by VFLUX2 through MATLAB are reliable for calculating the vertical undercurrent exchange rate of the heterogeneous sand column.
ISSN:1866-6280
1866-6299
DOI:10.1007/s12665-023-10959-3