Design of Gallic Acid–Glutamine Conjugate and Chemical Implications for Its Potency Against Alzheimer’s Amyloid‑β Fibrillogenesis

Epigallocatechin-3-gallate (EGCG) has been widely recognized as a potent inhibitor of Alzheimer’s amyloid-β (Aβ) fibrillogenesis. We found that gallic acid (GA) has superior inhibitory effects over EGCG at the same mass concentrations and assumed the pivotal role of the carboxyl group in GA. Therefo...

Full description

Saved in:
Bibliographic Details
Published inBioconjugate chemistry Vol. 33; no. 4; pp. 677 - 690
Main Authors Xu, Shaoying, Sun, Yan, Dong, Xiaoyan
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 20.04.2022
Amer Chemical Soc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Epigallocatechin-3-gallate (EGCG) has been widely recognized as a potent inhibitor of Alzheimer’s amyloid-β (Aβ) fibrillogenesis. We found that gallic acid (GA) has superior inhibitory effects over EGCG at the same mass concentrations and assumed the pivotal role of the carboxyl group in GA. Therefore, we designed five GA-derivatives to investigate the significance of carboxyl groups in modulating Aβ fibrillogenesis, including carboxyl-amidated GA (GA-NH2), GA-glutamic acid conjugate (GA-E), and GA-E derivatives with amidated either of the two carboxyl groups (GA-Q and GA-E-NH2) or with two amidated-carboxyl groups (GA-Q-NH2). Intriguingly, only GA-Q shows significantly stronger potency than GA and extends the life span of the AD transgenic nematode by over 30%. Thermodynamic studies reveal that GA-Q has a strong binding affinity for Aβ42 with two binding sites, one stronger (site 1, K a1 = 3.1 × 106 M–1) and the other weaker (site 2, K a2 = 0.8 × 106 M–1). In site 1, hydrogen bonding, electrostatic interactions, and hydrophobic interactions all have contributions, while in site 2, only hydrogen bonding and electrostatic interactions work. The two sites are confirmed by molecular simulations, and the computations specified the key residues. GA-Q has strong binding to Asp23, Gly33, Gly38, Ala30, Ile31, and Leu34 via hydrogen bonding and electrostatic interactions, while it interacts with Phe19, Ala21 Gly25, and Asn27 via hydrophobic interactions. Consequently, GA-Q destroys Asp23-Lys28 salt bridges and restricts β-sheet/bridge structures. The thermodynamic and molecular insight into the GA-Q functions on inhibiting Aβ fibrillogenesis would pave a new way to the design of potent molecules against Alzheimer’s amyloid.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1043-1802
1520-4812
DOI:10.1021/acs.bioconjchem.2c00073