Colloidal Particle-Induced Microstructural Transition in Cellulose/Ionic Liquid/Water Mixtures

The role of colloidal particles in enhancing the mechanical and thermal properties of liquid crystalline (LC) gels formed in microcrystalline cellulose/1-allyl-3-methylimidazolium chloride/water mixtures is experimentally investigated by means of rheology and polarized optical microscopy (POM). The...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 35; no. 38; pp. 12428 - 12438
Main Authors Rajeev, Ashna, Basavaraj, Madivala G
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.09.2019
Online AccessGet full text

Cover

Loading…
More Information
Summary:The role of colloidal particles in enhancing the mechanical and thermal properties of liquid crystalline (LC) gels formed in microcrystalline cellulose/1-allyl-3-methylimidazolium chloride/water mixtures is experimentally investigated by means of rheology and polarized optical microscopy (POM). The overshoot in loss modulus and increase in the melting temperature of LC domains as observed in differential scanning calorimetry signal a stronger interaction of cellulose with both hydrophobic polystyrene and hydrophilic silica nanoparticles which in turn point to considerable amphiphilic nature of cellulose. The aggregation of nanoparticles observed by POM and the rheological behavior point to the development of a sample-spanning network of cellulose–nanoparticle clusters during the sol–gel transition with an increase in concentration of water. Furthermore, the LC gels obey Chambon–Winter (CW) criterion, indicating a self-similar gel network, except at very high particle loadings. Moreover, the LC domains show a temporal evolution into a space-spanning network of cellulose spherulites. The evolution process largely depends on the particle concentration, with highly loaded samples showing quicker evolution, which leads to a violation of the CW criterion. Furthermore, the temperature-induced microstructural transition (with and without shear) is also examined.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.9b01457