IP-LC-MSMS Enables Identification of Three Tau O‑GlcNAcylation Sites as O‑GlcNAcase Inhibition Pharmacodynamic Readout in Transgenic Mice Overexpressing Human Tau

O-β-linked N-acetylglucosaminylation (O-GlcNAcylation) modulates tau phosphorylation and aggregation: the pharmacological increase of tau O-GlcNAcylation upon treatment with inhibitors of O-GlcNAc hydrolase (OGA) constitutes a potential strategy to tackle neurodegenerative diseases. Analysis of tau...

Full description

Saved in:
Bibliographic Details
Published inJournal of proteome research Vol. 22; no. 4; pp. 1309 - 1321
Main Authors Bijttebier, Sebastiaan, Rodrigues Martins, Dina, Mertens, Liesbeth, Grauwen, Karolien, Bruinzeel, Wouter, Willems, Roland, Bartolomé-Nebreda, José Manuel, Theunis, Clara, Bretteville, Alexis, Ebneth, Andreas, Dillen, Lieve
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 07.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:O-β-linked N-acetylglucosaminylation (O-GlcNAcylation) modulates tau phosphorylation and aggregation: the pharmacological increase of tau O-GlcNAcylation upon treatment with inhibitors of O-GlcNAc hydrolase (OGA) constitutes a potential strategy to tackle neurodegenerative diseases. Analysis of tau O-GlcNAcylation could potentially be used as a pharmacodynamic biomarker both in preclinical and clinical studies. The goal of the current study was to confirm tau O-GlcNAcylation at S400 as a pharmacodynamic readout of OGA inhibition in P301S transgenic mice overexpressing human tau and treated with the OGA inhibitor Thiamet G and to explore if additional O-GlcNAcylation sites on tau could be identified. As a first step, an immunoprecipitation-liquid chromatography-mass spectrometry (IP-LC-MS) methodology was developed to monitor changes in O-GlcNAcylation around S400 of tau in mouse brain homogenate (BH) extracts. Second, additional O-GlcNAc sites were identified in in-house produced recombinant O-GlcNAcylated human tau at relatively high concentrations, thereby facilitating collection of informative LC-MS data for identification of low-concentration O-GlcNAc-tryptic tau peptides in human transgenic mouse BH extracts. This strategy enabled, for the first time, identification of three low abundant N-terminal and mid-domain O-GlcNAc sites of tau (at S208, S191, and S184 or S185) in human transgenic mouse BH. Data are openly available at data.mendeley.com (doi: 10.17632/jp57yk9469.1; doi: 10.17632/8n5j45dnd8.1; doi: 10.17632/h5vdrx4n3d.1).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1535-3893
1535-3907
1535-3907
DOI:10.1021/acs.jproteome.2c00822