Cobalt Hexacyanoferrate on BiVO4 Photoanodes for Robust Water Splitting
The efficient integration of photoactive and catalytic materials is key to promoting photoelectrochemical water splitting as a sustainable energy technology built on solar power. Here, we report highly stable water splitting photoanodes from BiVO4 photoactive cores decorated with CoFe Prussian blue-...
Saved in:
Published in | ACS applied materials & interfaces Vol. 9; no. 43; pp. 37671 - 37681 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
01.11.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The efficient integration of photoactive and catalytic materials is key to promoting photoelectrochemical water splitting as a sustainable energy technology built on solar power. Here, we report highly stable water splitting photoanodes from BiVO4 photoactive cores decorated with CoFe Prussian blue-type electrocatalysts (CoFe-PB). This combination decreases the onset potential of BiVO4 by ∼0.8 V (down to 0.3 V vs reversible hydrogen electrode (RHE)) and increases the photovoltage by 0.45 V. The presence of the catalyst also leads to a remarkable 6-fold enhancement of the photocurrent at 1.23 V versus RHE, while keeping the light-harvesting ability of BiVO4. Structural and mechanistic studies indicate that CoFe-PB effectively acts as a true catalyst on BiVO4. This mechanism, stemming from the adequate alignment of the energy levels, as showed by density functional theory calculations, allows CoFe-PB to outperform all previous catalyst/BiVO4 junctions and, in addition, leads to noteworthy long-term stability. A bare 10–15% decrease in photocurrent was observed after more than 50 h of operation under light irradiation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.7b09449 |