Dimeric Assembly of Enterocyte Brush Border Enzymes

The noncovalent, dimeric assembly of small intestinal brush border enzymes was studied by sedimentation analysis in density gradients of extracts of pulse-labeled pig jejunal mucosal explants. Like aminopeptidase N (EC 3.4.11.2), sucrase-isomaltase (EC 3.2.1.48-10), aminopeptidase A (EC 3.4.11.7), a...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 33; no. 6; pp. 1599 - 1605
Main Author Danielsen, E. Michael
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 15.02.1994
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The noncovalent, dimeric assembly of small intestinal brush border enzymes was studied by sedimentation analysis in density gradients of extracts of pulse-labeled pig jejunal mucosal explants. Like aminopeptidase N (EC 3.4.11.2), sucrase-isomaltase (EC 3.2.1.48-10), aminopeptidase A (EC 3.4.11.7), and dipeptidyl peptidase IV (EC 3.4.14.5) were all observed to dimerize predominantly prior to the Golgi-associated complex glycosylation, i.e., in the endoplasmic reticulum or in an intermediate compartment between this organelle and the Golgi complex. However, small amounts of monomeric complex-glycosylated forms, in particular of sucrase-isomaltase, were detectable. This indicates that homodimerization cannot be an absolute requirement for transport to, and through, the Golgi complex although our data suggest that dimeric assembly may increase the rate of intracellular transport. Culture at low temperature (20 degrees C) reduced the rate of, but did not prevent, dimerization. Maltase-glucoamylase (EC 3.2.1.20) only appeared as a dimer when extracted and analyzed under low salt conditions, suggesting a weak association between the two subunits. This finding is consistent with the electronmicroscopic appearance of the liposome-reconstituted enzyme [Norén et al. (1986) J. Biol. Chem. 261, 12306-12309], showing only the inner, membrane-anchored domains of the monomers to be in close contact with one another while the outer domains are far apart. In contrast to the other brush border enzymes studied, lactase-phlorizin hydrolase (EC 3.2.1.23-62) was found to occur predominantly as a monomer in its transient, high mannose-glycosylated state.
Bibliography:ark:/67375/TPS-2GWDFDK0-Q
istex:0F33BE522E1A2AB57F2050CF549FB526A1AF7034
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00172a041