Synthesis of pyrimidin-2-one nucleosides as acid-stable inhibitors of cytidine deaminase

One of the problems encountered in the use of tetrahydrouridine (THU, 2) and saturated 2-oxo-1,3-diazepine nucleosides as orally administered cytidine deaminase (CDA) inhibitors is their acid instability. Under acid conditions these compounds are rapidly converted into inactive ribopyranoside forms....

Full description

Saved in:
Bibliographic Details
Published inJournal of medicinal chemistry Vol. 29; no. 8; pp. 1374 - 1380
Main Authors Kim, Chong Ho, Marquez, Victor E, Mao, David T, Haines, David R, McCormack, John J
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.08.1986
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:One of the problems encountered in the use of tetrahydrouridine (THU, 2) and saturated 2-oxo-1,3-diazepine nucleosides as orally administered cytidine deaminase (CDA) inhibitors is their acid instability. Under acid conditions these compounds are rapidly converted into inactive ribopyranoside forms. A solution this problem was sought by functionalizing the acid-stable but less potent CDA inhibitor 1-beta-D-ribofuranosyl-2(1H)-pyrimidinone (1) with the hope of increasing its potency to the level achieved with THU. The selection of the hydroxymethyl substituent at C-4, which led to the synthesis of 4-(hydroxymethyl)-1-beta-D-ribofuranosyl-2(1H)-pyrimidinone (10), 3,4-dihydro-4-(hydroxymethyl)-1-beta-D-ribofuranosyl-2(1H)-pyrimidinone (7), and 3,4,5,6-tetrahydro-4-(dihydroxymethyl)-1-beta-D-ribofuranosyl-2(1H)-p yrimidinone (28) was based on the transition-state (TS) concept. The key intermediate precursor, 4-[(benzoyloxy)methyl]-1-(2,3,5-tri-O-benzoyl-beta-D-ribofuranosyl)-2(H) -pyrimidinone (24), was obtained via the classical Hilbert-Johnson reaction between 2-methoxy-4-[(benzoyloxy)methyl]pyrimidine (20) and 2,3,5-tri-O-benzoyl-1-D-ribofuranosyl bromide (21). Deprotection of 24 afforded compound 10, while its sodium borohydride reduction products afforded compounds 7 and 28 after removal of the blocking groups. Syntheses of 3,4-dihydro-1-beta-D-ribofuranosyl-2(1H)-pyrimidinone (9) and 3,6-dihydro-1-beta-D-ribofuranosyl-2(1H)-pyrimidinone (8), which lack the hydroxymethyl substituent, was accomplished in a similar fashion. The new compounds bearing the hydroxymethyl substituent were more acid stable than THU, and their CDA inhibitory potency, expressed in terms of Ki values, spanned from 10(-4) to 10(-7) M in a manner consistent with the TS theory. Compound 7, in particular, was superior to its parent 1 and equipotent to THU (Ki = 4 X 10(-7) M) when examined against mouse kidney CDA. The superior acid stability of this compound coupled to its potent inhibitory properties against CDA should provide a means of testing oral combinations of rapidly deaminated drugs, viz. ara-C, without the complications associated with the acid instability of THU.
Bibliography:istex:0F2DBCE3063DF0C5DF88C143ADE2BEB0FE19250B
ark:/67375/TPS-2V5QMTFG-S
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-2623
1520-4804
DOI:10.1021/jm00158a009