Redox Cycling in the Metabolism of the Environmental Pollutant and Suspected Human Carcinogen o-Anisidine by Rat and Rabbit Hepatic Microsomes
We investigated the ability of hepatic microsomes from rat and rabbit to metabolize 2-methoxyaniline (o-anisidine), an industrial and environmental pollutant and a bladder carcinogen for rodents. Using HPLC combined with electrospray tandem mass spectrometry, we determined that o-anisidine is oxidiz...
Saved in:
Published in | Chemical research in toxicology Vol. 21; no. 8; pp. 1610 - 1621 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.08.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We investigated the ability of hepatic microsomes from rat and rabbit to metabolize 2-methoxyaniline (o-anisidine), an industrial and environmental pollutant and a bladder carcinogen for rodents. Using HPLC combined with electrospray tandem mass spectrometry, we determined that o-anisidine is oxidized by microsomes of both species to N-(2-methoxyphenyl)hydroxylamine, o-aminophenol, and one additional metabolite, the exact structure of which has not been identified as yet. N-(2-Methoxyphenyl)hydroxylamine is either further oxidized to 2-methoxynitrosobenzene (o-nitrosoanisole) or reduced to parental o-anisidine, which can be oxidized again to produce o-aminophenol. To define the role of microsomal cytochromes P450 (P450) in o-anisidine metabolism, we investigated the modulation of this metabolism by specific inducers and selective inhibitors of these enzymes. The results of the studies suggest that o-anisidine is a promiscuous substrate of P450s of rat and rabbit liver; because P450s of 1A, 2B, 2E, and 3A subfamilies metabolize o-anisidine in hepatic microsomes of both studied species. Using purified enzymes of rat and rabbit (P450s 1A1, 1A2, 2B2, 2B4, 2E1, 2C3, 3A1, and 3A6), reconstituted with NADPH:P450 reductase, the ability of P450s 1A1, 1A2, 2B2, 2B4, 2E1, and 3A6 to metabolize o-anisidine was confirmed. In the reconstituted P450 system, rabbit P450 2E1 was the most efficient enzyme metabolizing o-anisidine. The data demonstrate the participation of different rat and rabbit P450s in o-anisidine metabolism and indicate that both experimental animal species might serve as suitable models to mimic the fate of o-anisidine in human. |
---|---|
Bibliography: | ark:/67375/TPS-F46F37CN-D istex:2ABB240A845DD4B1DA5E8ED298DDF2F8B18A2179 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0893-228X 1520-5010 |
DOI: | 10.1021/tx8001127 |