Integrated ML-Based Strategy Identifies Drug Repurposing for Idiopathic Pulmonary Fibrosis
Idiopathic pulmonary fibrosis (IPF) affects an estimated global population of around 3 million individuals. IPF is a medical condition with an unknown cause characterized by the formation of scar tissue in the lungs, leading to progressive respiratory disease. Currently, there are only two FDA-appro...
Saved in:
Published in | ACS omega Vol. 9; no. 27; pp. 29870 - 29883 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
09.07.2024
|
Online Access | Get full text |
Cover
Loading…
Summary: | Idiopathic pulmonary fibrosis (IPF) affects an estimated global population of around 3 million individuals. IPF is a medical condition with an unknown cause characterized by the formation of scar tissue in the lungs, leading to progressive respiratory disease. Currently, there are only two FDA-approved small molecule drugs specifically for the treatment of IPF and this has created a demand for the rapid development of drugs for IPF treatment. Moreover, denovo drug development is time and cost-intensive with less than a 10% success rate. Drug repurposing currently is the most feasible option for rapidly making the drugs to market for a rare and sporadic disease. Normally, the repurposing of drugs begins with a screening of FDA-approved drugs using computational tools, which results in a low hit rate. Here, an integrated machine learning-based drug repurposing strategy is developed to significantly reduce the false positive outcomes by introducing the predock machine-learning-based predictions followed by literature and GSEA-assisted validation and drug pathway prediction. The developed strategy is deployed to 1480 FDA-approved drugs and to drugs currently in a clinical trial for IPF to screen them against “TGFB1”, “TGFB2”, “PDGFR-a”, “SMAD-2/3”, “FGF-2”, and more proteins resulting in 247 total and 27 potentially repurposable drugs. The literature and GSEA validation suggested that 72 of 247 (29.14%) drugs have been tried for IPF, 13 of 247 (5.2%) drugs have already been used for lung fibrosis, and 20 of 247 (8%) drugs have been tested for other fibrotic conditions such as cystic fibrosis and renal fibrosis. Pathway prediction of the remaining 142 drugs was carried out resulting in 118 distinct pathways. Furthermore, the analysis revealed that 29 of 118 pathways were directly or indirectly involved in IPF and 11 of 29 pathways were directly involved. Moreover, 15 potential drug combinations are suggested for showing a strong synergistic effect in IPF. The drug repurposing strategy reported here will be useful for rapidly developing drugs for treating IPF and other related conditions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.4c03796 |