Chemomechanics of Rechargeable Batteries: Status, Theories, and Perspectives

Chemomechanics is an old subject, yet its importance has been revived in rechargeable batteries where the mechanical energy and damage associated with redox reactions can significantly affect both the thermodynamics and rates of key electrochemical processes. Thanks to the push for clean energy and...

Full description

Saved in:
Bibliographic Details
Published inChemical reviews Vol. 122; no. 15; pp. 13043 - 13107
Main Authors de Vasconcelos, Luize Scalco, Xu, Rong, Xu, Zhengrui, Zhang, Jin, Sharma, Nikhil, Shah, Sameep Rajubhai, Han, Jiaxiu, He, Xiaomei, Wu, Xianyang, Sun, Hong, Hu, Shan, Perrin, Madison, Wang, Xiaokang, Liu, Yijin, Lin, Feng, Cui, Yi, Zhao, Kejie
Format Journal Article
LanguageEnglish
Published Easton American Chemical Society 10.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chemomechanics is an old subject, yet its importance has been revived in rechargeable batteries where the mechanical energy and damage associated with redox reactions can significantly affect both the thermodynamics and rates of key electrochemical processes. Thanks to the push for clean energy and advances in characterization capabilities, significant research efforts in the last two decades have brought about a leap forward in understanding the intricate chemomechanical interactions regulating battery performance. Going forward, it is necessary to consolidate scattered ideas in the literature into a structured framework for future efforts across multidisciplinary fields. This review sets out to distill and structure what the authors consider to be significant recent developments on the study of chemomechanics of rechargeable batteries in a concise and accessible format to the audiences of different backgrounds in electrochemistry, materials, and mechanics. Importantly, we review the significance of chemomechanics in the context of battery performance, as well as its mechanistic understanding by combining electrochemical, materials, and mechanical perspectives. We discuss the coupling between the elements of electrochemistry and mechanics, key experimental and modeling tools from the small to large scales, and design considerations. Lastly, we provide our perspective on ongoing challenges and opportunities ranging from quantifying mechanical degradation in batteries to manufacturing battery materials and developing cyclic protocols to improve the mechanical resilience.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:0009-2665
1520-6890
1520-6890
DOI:10.1021/acs.chemrev.2c00002