Isothermal Titration Calorimetry Studies of the Binding of the Antimicrobial Peptide Gramicidin S to Phospholipid Bilayer Membranes
The binding of the amphiphilic, positively charged, cyclic β-sheet antimicrobial decapeptide gramicidin S (GS) to various lipid bilayer model membrane systems was studied by isothermal titration calorimetry. Large unilamellar vesicles composed of the zwitterionic phospholipid 1-palmitoyl-2-oleoylpho...
Saved in:
Published in | Biochemistry (Easton) Vol. 44; no. 33; pp. 11279 - 11285 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
23.08.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The binding of the amphiphilic, positively charged, cyclic β-sheet antimicrobial decapeptide gramicidin S (GS) to various lipid bilayer model membrane systems was studied by isothermal titration calorimetry. Large unilamellar vesicles composed of the zwitterionic phospholipid 1-palmitoyl-2-oleoylphosphatidylcholine or the anionic phospholipid 1-palmitoyl-2-oleoylphosphatidylglycerol, or a binary mixture of the two, with or without cholesterol, were used to mimic the lipid compositions of the outer monolayers of the lipid bilayers of mammalian and bacterial membranes, respectively. Dynamic light scattering results suggest the absence of major alterations in vesicle size or appreciable vesicle fusion upon the binding of GS to the lipid vesicles under our experimental conditions. The binding isotherms can be reasonably well described by a one-site binding model. GS is found to bind with higher affinity to anionic phosphatidylglycerol than to zwitterionic phosphatidylcholine vesicles, indicating that electrostatic interactions in the former system facilitate peptide binding. However, the presence of cholesterol reduced binding only slightly, indicating that the binding of GS is not highly sensitive to the order of the phospholipid bilayer system. Similarly, the measured positive endothermic binding enthalpy (ΔH) varies only modestly (2.6 to 4.4 kcal/mol), and the negative free energy of binding (ΔG) also remains relatively constant (−10.9 to −12.1 kcal/mol). The relatively large but invariant positive binding entropy, reflected in relatively large TΔS values (13.4 to 16.4 kcal/mol), indicates that GS binding to phospholipid bilayers is primarily entropy driven. Finally, the relative binding affinities of GS for various phospholipid vesicles correlate relatively well with the relative lipid specificity for GS interactions with bacterial and erythrocyte membranes observed in vivo. |
---|---|
Bibliography: | Supported by operating and major equipment grants from the Canadian Institutes of Health Research (R.N.M.), a major equipment grant from the Alberta Heritage Foundation for Medical Research (R.N.M.), Operating Grants RO1 AI148714 and RO1 GM61855 from the National Institutes of Health (R.S.H.), and the John Stewart Chair in Peptide Chemistry (R.S.H.). istex:4381CCBA3C242078A51FF7B7F66F84AC6F2E0DA4 ark:/67375/TPS-C9KDT80S-Q ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi050898a |