Three‐dimensional anisotropic plasticity model for sand subjected to principal stress value change and axes rotation

A three‐dimensional (3D) anisotropic plasticity model for sand is formulated in this study to provide a constitutive description for both radial and principal stress axes rotation (PSAR) loading‐induced behavior under various conditions with a single set of model parameters. The model has zero elast...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical and analytical methods in geomechanics Vol. 45; no. 3; pp. 353 - 381
Main Authors Xue, Long, Yu, Jia‐Ke, Pan, Jin‐Hong, Wang, Rui, Zhang, Jian‐Min
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A three‐dimensional (3D) anisotropic plasticity model for sand is formulated in this study to provide a constitutive description for both radial and principal stress axes rotation (PSAR) loading‐induced behavior under various conditions with a single set of model parameters. The model has zero elastic range, with plastic loading and flow direction dependent on both current stress and stress rate direction. Fabric tensor is introduced along with its evolution to achieve anisotropic plastic modulus, dilatancy, and flow rule formulations. Increase in plastic modulus under continuous PSAR achieves eventual convergence of strain accumulation. A unique decomposition of dilatancy controls the overall contraction and periodic dilatancy oscillation under PSAR. The performance of the model is first thoroughly evaluated based on drained/undrained, monotonic shear/PSAR tests on Toyoura sand, showing its effectiveness in reproducing the behavior of real sand. Discrete element method numerical test results are then adopted for comprehensive calibration of the model parameters, and then for validation of the model under 3D PSAR in any arbitrary direction. These comparisons highlight the model's capability in simulating the behavior of granular soil under 3D stress paths.
ISSN:0363-9061
1096-9853
DOI:10.1002/nag.3159