Templating Effects in Molecular Growth of Blended Films for Efficient Small-Molecule Photovoltaics
A strategy to control the molecular growth of coevaporated zinc phthalocyanine (ZnPc) and fullerene (C60) blended films for efficient organic photovoltaic (OPV) cells was demonstrated. Introduction of a 2,5-bis(4-biphenylyl)-bithiophene (BP2T) film or a ZnPc film on BP2T as nanostructured templates...
Saved in:
Published in | ACS applied materials & interfaces Vol. 6; no. 9; pp. 6369 - 6377 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
14.05.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A strategy to control the molecular growth of coevaporated zinc phthalocyanine (ZnPc) and fullerene (C60) blended films for efficient organic photovoltaic (OPV) cells was demonstrated. Introduction of a 2,5-bis(4-biphenylyl)-bithiophene (BP2T) film or a ZnPc film on BP2T as nanostructured templates not only results in phase-separated domains in blended films with clear interpenetrating networks but also improves the crystallinity of ZnPc domains, both of which enhance photocurrent generation and charge carrier transport. Such morphology is strongly associated with the molecular growth of the templating layers. Roughness and adhesion of the templating layers are of great importance for the molecular growth of the blended films and in turn for cell characteristics. By carefully regulating the molecular growth of the blended films, the power conversion efficiency was improved by 125%, from 1.85 to 4.15% under 1 sun. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/am405740c |