Synthesis of Enantioenriched Tertiary Boronic Esters by the Lithiation/Borylation of Secondary Alkyl Benzoates
Simple, secondary 2,4,6-triisopropyl benzoates (TIB esters) and secondary dialkyl N,N-diisopropyl carbamates have been reported to be resistant to deprotonation by strong bases. We have found that the combination of sBuLi (1.6 equiv) and TMEDA (6 equiv) in CPME at −60 °C enables deprotonation of un...
Saved in:
Published in | Journal of the American Chemical Society Vol. 135; no. 43; pp. 16054 - 16057 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
WASHINGTON
American Chemical Society
30.10.2013
Amer Chemical Soc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Simple, secondary 2,4,6-triisopropyl benzoates (TIB esters) and secondary dialkyl N,N-diisopropyl carbamates have been reported to be resistant to deprotonation by strong bases. We have found that the combination of sBuLi (1.6 equiv) and TMEDA (6 equiv) in CPME at −60 °C enables deprotonation of unactivated secondary dialkyl TIB esters, but not the carbamates. These carbanions were reacted with a range of neopentyl boronic esters which, after 1,2-metalate rearrangement and oxidation, gave a range of tertiary alcohols in high yield and universally high er. Further functional group transformations of the tertiary boronic esters were demonstrated (conversion to quaternary centers, C-tertiary amines) together with application of the methodology to the synthesis of the simplest unbranched hydrocarbon bearing a quaternary center, (R)-4-ethyl-4-methyloctane, validating the synthetic utility of the methodology. |
---|---|
Bibliography: | researchfish UKRI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja409100y |