Probing the Redox States at the Surface of Electroactive Nanoporous NiO Thin Films

Nanoporous NiO thin film electrodes were obtained via plasma-assisted microwave sintering and characterized by means of a combination of electrochemical techniques and X-ray photoelectron spectroscopy (XPS). The aim of this study is the elucidation of the nature of the surface changes introduced by...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 6; no. 1; pp. 143 - 152
Main Authors Marrani, Andrea G, Novelli, Vittoria, Sheehan, Stephen, Dowling, Denis P, Dini, Danilo
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 08.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nanoporous NiO thin film electrodes were obtained via plasma-assisted microwave sintering and characterized by means of a combination of electrochemical techniques and X-ray photoelectron spectroscopy (XPS). The aim of this study is the elucidation of the nature of the surface changes introduced by the redox processes of this nanostructured material. NiO undergoes two distinct electrochemical processes of oxidation in aqueous electrolyte with the progress of NiO anodic polarization. These findings are consistent with the sequential formation of oxyhydroxide species at the surface, the chemical nature of which was assessed by XPS. Electronic relaxation effects in the Ni 2p spectra clearly indicated that the superficial oxyhydroxide species resulted to be β-NiOOH and γ-NiOOH. We also show for the first time spectral evidence of an electrochemically generated Ni(IV) species. This study has direct relevance for those applications in which NiO electrodes are utilized in aqueous electrolyte, namely catalytic water splitting or electrochromism, and may constitute a starting point for the comprehension of electronic phenomena at the NiO/organic electrolyte interface of cathodic dye-sensitized solar cells (p-DSCs).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
DOI:10.1021/am403671h