Calcrete profile development in Quaternary alluvial sequences, southeast Spain: implications for using calcretes as a basis for landform chronologies

A detailed study of the morphology and micro‐morphology of Quaternary alluvial calcrete profiles from the Sorbas Basin shows that calcretes may be morphologically simple or complex. The ‘simple’ profiles reflect pedogenesis occurring after alluvial terrace formation and consist of a single pedogenic...

Full description

Saved in:
Bibliographic Details
Published inEarth surface processes and landforms Vol. 28; no. 2; pp. 169 - 185
Main Authors Candy, Ian, Black, Stuart, Sellwood, Bruce W., Rowan, John S.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.02.2003
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A detailed study of the morphology and micro‐morphology of Quaternary alluvial calcrete profiles from the Sorbas Basin shows that calcretes may be morphologically simple or complex. The ‘simple’ profiles reflect pedogenesis occurring after alluvial terrace formation and consist of a single pedogenic horizon near the land surface. The ‘complex’ profiles reflect the occurrence of multiple calcrete events during terrace sediment aggradation and further periods of pedogenesis after terrace formation. These ‘complex’ calcrete profiles are consequently described as composite profiles. The exact morphology of the composite profiles depends upon: (1) the number of calcrete‐forming events occurring during terrace sediment aggradation; (2) the amount of sediment accretion that occurs between each period of calcrete formation; and (3) the degree of pedogenesis after terrace formation. Simple calcrete profiles are most useful in establishing landform chronologies because they represent a single phase of pedogenesis after terrace formation. Composite profiles are more problematic. Pedogenic calcretes that form within them may inherit carbonate from calcrete horizons occurring lower down in the terrace sediments. In addition erosion may lead to the exhumation of older calcretes within the terrace sediment. Calcrete ‘inheritance’ may make pedogenic horizons appear more mature than they actually are and produce horizons containing carbonate embracing a range of ages. Calcrete exhumation exposes calcrete horizons whose morphology and radiometric ages are wholly unrelated to terrace surface age. Composite profiles are, therefore, only suitable for chronological studies if the pedogenic horizon capping the terrace sequence can be clearly distinguished from earlier calcrete‐forming events. Thus, a detailed morphological/micro‐morphological study is required before any chronological study is undertaken. This is the only way to establish whether particular calcrete profiles are suitable for dating purposes. Copyright © 2003 John Wiley & Sons, Ltd.
Bibliography:ArticleID:ESP445
ark:/67375/WNG-DCDB1MVV-C
NERC - No. GT4/99/236
istex:4BBB9B058EBE2969F6EC6C35D6A9791A84A2F75E
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0197-9337
1096-9837
DOI:10.1002/esp.445