In Vitro Selection of Anti-Akt2 Thioether-Macrocyclic Peptides Leading to Isoform-Selective Inhibitors

The Akt kinase family, consisting of three isoforms in humans, is a well-validated class of drug target. Through various screening campaigns in academics and pharmaceutical industries, several promising inhibitors have been developed to date. However, due to the mechanistic and structural similariti...

Full description

Saved in:
Bibliographic Details
Published inACS chemical biology Vol. 7; no. 3; pp. 607 - 613
Main Authors Hayashi, Yuuki, Morimoto, Jumpei, Suga, Hiroaki
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.03.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Akt kinase family, consisting of three isoforms in humans, is a well-validated class of drug target. Through various screening campaigns in academics and pharmaceutical industries, several promising inhibitors have been developed to date. However, due to the mechanistic and structural similarities of Akt kinases, it is yet a challenging task to discover selective inhibitors against a specific Akt isoform. We here report Akt-selective and also Akt2 isoform-selective inhibitors based on a thioether-macrocyclic peptide scaffold. Several anti-Akt2 peptides have been selected from a library by means of an in vitro display system, referred to as the RaPID (Random nonstandard Peptide Integrated Discovery) system. Remarkably, the majority of these “binding-active” anti-Akt2 peptides turned out to be “inhibitory active”, exhibiting IC50 values of approximately 100 nM. Moreover, these peptides are not only selective to the Akt kinase family but also isoform-selective to Akt2. Particularly, one referred to as Pakti-L1 is able to discriminate Akt2 250- and 40-fold over Akt1 and Akt3, respectively. This proof-of-concept case study suggests that the RaPID system has a tremendous potential for the discovery of unique inhibitors with high family- and isoform-selectivity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1554-8929
1554-8937
DOI:10.1021/cb200388k