Linear- and Angular-Shaped Naphthodithiophenes: Selective Synthesis, Properties, and Application to Organic Field-Effect Transistors

A straightforward synthetic approach that exploits linear- and angular-shaped naphthodithiophenes (NDTs) being potential as new core structures for organic semiconductors is described. The newly established synthetic procedure involves two important steps; one is the chemoselective Sonogashira coupl...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 133; no. 13; pp. 5024 - 5035
Main Authors Shinamura, Shoji, Osaka, Itaru, Miyazaki, Eigo, Nakao, Akiko, Yamagishi, Masakazu, Takeya, Jun, Takimiya, Kazuo
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 06.04.2011
Amer Chemical Soc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A straightforward synthetic approach that exploits linear- and angular-shaped naphthodithiophenes (NDTs) being potential as new core structures for organic semiconductors is described. The newly established synthetic procedure involves two important steps; one is the chemoselective Sonogashira coupling reaction on the trifluoromethanesulfonyloxy site over the bromine site enabling selective formation of o-bromoethynylbenzene substructures on the naphthalene core, and the other is a facile ring closing reaction of fused-thiophene rings from the o-bromoethynylbenzene substructures. As a result, three isomeric NDTs, naphtho[2,3-b:6,7-b′]dithiophene, naphtho[2,3-b:7,6-b′]dithiophenes, and naphtho[2,1-b:6,5-b′]dithiophene, are selectively synthesized. Electrochemical and optical measurements of the parent NDTs indicated that the shape of the molecules plays an important role in determining the electronic structure of the compounds; the linear-shaped NDTs formally isoelectronic with naphthacene have lower oxidation potentials and more red-shifted absorption bands than those of the angular-shaped NDTs isoelectronic with chrysene. On the contrary, the performance of the thin-film-based field-effect transistors (FETs) using the dioctyl or diphenyl derivatives were much influenced by the symmetry of the molecules; centrosymmetric derivatives tend to give higher mobility (up to 1.5 cm2 V−1 s−1) than axisymmetric ones (∼0.06 cm2 V−1 s−1), implying that the intermolecular orbital overlap in the solid state is influenced by the symmetry of the molecules. These results indicate that the present NDT cores, in particular the linear-shaped, centrosymmetric naphtho[2,3-b:6,7-b′]dithiophene, are promising building blocks for the development of organic semiconducting materials.
Bibliography:KAKEN
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
DOI:10.1021/ja110973m