Spatio‐Temporal Variations in Stream–Aquifer Interactions Following Construction of Weirs in Korea

The “Four Major Rivers Restoration Project” was conducted to secure sufficient water resources, introduce comprehensive flood control measures, improve water quality, and restore river ecosystems in Korea. As a part of the project, 16 sites were dredged and weirs were installed in the Han, Geum, Yeo...

Full description

Saved in:
Bibliographic Details
Published inGround water Vol. 54; no. 3; pp. 448 - 458
Main Authors Lee, Hyeonju, Koo, Min‐Ho, Kim, Kisu, Kim, Yongcheol
Format Journal Article
LanguageEnglish
Published Malden, US Blackwell Publishing Ltd 01.05.2016
Ground Water Publishing Company
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The “Four Major Rivers Restoration Project” was conducted to secure sufficient water resources, introduce comprehensive flood control measures, improve water quality, and restore river ecosystems in Korea. As a part of the project, 16 sites were dredged and weirs were installed in the Han, Geum, Yeongsan, and Nakdong Rivers from late 2010 to early 2012. Groundwater data were obtained from 213 groundwater monitoring wells near the four major rivers to analyze the impacts of weir construction on the nearby groundwater flow system. The groundwater level and chemical characteristics were analyzed to investigate how the groundwater flow system and water quality changed following weir construction. Our results show that the groundwater level immediately increased with increased river levels following weir construction. In addition, the hydrologic condition of some rivers upstream of the weirs was changed from gaining to losing streams. Consequently, the direction of groundwater flow changed from perpendicular to parallel to the river, and groundwater downstream of the weir became recharged from the area upstream of the weir. This should affect groundwater quality, which should become similar to the river water; however, this change has not yet been observed. Therefore, both further monitoring of the groundwater quality and further hydrogeochemical analysis are required for quantitative evaluation of the effects of weir construction in the study area.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0017-467X
1745-6584
DOI:10.1111/gwat.12373