Through-Shell Alkyllithium Additions and Borane Reductions

The through-shell borane reduction and methyllithium addition to benzaldehyde (1), benzocyclobutenone (2), and benzocyclobutenedione (3) incarcerated inside a hemicarcerand (4) with four tetramethylenedioxy bridges are reported. All guests could be reduced and methylated. Selective monoreduction and...

Full description

Saved in:
Bibliographic Details
Published inJournal of organic chemistry Vol. 68; no. 6; pp. 2077 - 2088
Main Authors Warmuth, Ralf, Maverick, Emily F, Knobler, Carolyn B, Cram, Donald J
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 21.03.2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The through-shell borane reduction and methyllithium addition to benzaldehyde (1), benzocyclobutenone (2), and benzocyclobutenedione (3) incarcerated inside a hemicarcerand (4) with four tetramethylenedioxy bridges are reported. All guests could be reduced and methylated. Selective monoreduction and monomethylation were observed for 3. In the methyllithium addition to 4⊙3, the initially formed lithium alcoholate underwent a Moore rearrangement. The reactivity of the incarcerated guests toward methyllithium increased in the order 1 < 2 ≪ 3 and toward borane in the order 1 ≪ 2 ≈ 3. Guest reactivity was correlated with the inner-phase location of the reacting carbonyl group in the preferred guest inner-phase orientation. The latter was determined from the X-ray structures of 4⊙1, 4⊙2, and 4⊙3, from molecular mechanical calculations, and from the hemicarcerand-induced upfield shift of the guest proton resonances. In the methyllithium and n-butyllithium addition to 4⊙1 and 4⊙3 at elevated temperatures, selective cleavage of a host's spanner or tetramethylenedioxy bridge, respectively, was observed. The cleavage of one spanner also took place in the methyllithium addition to the 1-methyl-2-pyrrolidinone hemicarceplex. These scission reactions are initiated by the initially formed lithium alcoholates, which show enhanced basicity and nucleophilicity in the inner phase as compared to the bulk phase. Mechanisms for the host scission reactions are discussed.
Bibliography:istex:5BA4F20A3646832491BBE81686DF8E8F429AE24A
ark:/67375/TPS-0CN9DZ0D-R
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3263
1520-6904
DOI:10.1021/jo026649z