Impact of Cation Multiplicity on Halide Perovskite Defect Densities and Solar Cell Voltages
Metal-halide perovskites feature very low deep-defect densities, thereby enabling high operating voltages at the solar cell level. Here, by precise extraction of their absorption spectra, we find that the low deep-defect density is unaffected when cations such as Cs+ and Rb+ are added during the per...
Saved in:
Published in | Journal of physical chemistry. C Vol. 124; no. 50; pp. 27333 - 27339 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
17.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Metal-halide perovskites feature very low deep-defect densities, thereby enabling high operating voltages at the solar cell level. Here, by precise extraction of their absorption spectra, we find that the low deep-defect density is unaffected when cations such as Cs+ and Rb+ are added during the perovskite synthesis. By comparing single crystals and polycrystalline thin films of methylammonium lead iodide/bromide, we find these defects to be predominantly localized at surfaces and grain boundaries. Furthermore, generally, for the most important photovoltaic materials, we demonstrate a strong correlation between their Urbach energy and open-circuit voltage deficiency at the solar cell level. Through external quantum yield photoluminescence efficiency measurements, we explain these results as a consequence of nonradiative open-circuit voltage losses in the solar cell. Finally, we define practical power conversion efficiency limits of solar cells by taking into account the Urbach energy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1932-7447 1932-7455 1932-7455 |
DOI: | 10.1021/acs.jpcc.0c08193 |