Ionization Energy and Reduction Potential in Ferrocene Derivatives: Comparison of Hybrid and Pure DFT Functionals

Hybrid density functionals have been regularly applied in state-of-the-art computational models for predicting reduction potentials. Benchmark calculations of the absolute reduction potential of ferricenium/ferrocene couple, the IUPAC-proposed reference in nonaqueous solution, include the B3LYP/6-31...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 124; no. 39; pp. 8029 - 8039
Main Authors Toma, Mateja, Kuvek, Tea, Vrček, Valerije
Format Journal Article
LanguageEnglish
Published American Chemical Society 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hybrid density functionals have been regularly applied in state-of-the-art computational models for predicting reduction potentials. Benchmark calculations of the absolute reduction potential of ferricenium/ferrocene couple, the IUPAC-proposed reference in nonaqueous solution, include the B3LYP/6-31G­(d)/LanL2TZf protocol. We used this procedure to calculate ionization energies and reduction potentials for a comprehensive set of ferrocene derivatives. The protocol works very well for a number of derivatives. However, a significant discrepancy (>1 V) between experimental and calculated data was detected for selected cases. Three variables were assessed to detect an origin of the observed failure: density functional, basis set, and solvation model. It comes out that the Hartree–Fock exchange fraction in hybrid-DFT methods is the main source of the error. The accidental errors were observed for other hybrid models like PBE0, BHandHLYP, and M06-2X. Therefore, hybrid DFT methods should be used with caution, or pure functionals (BLYP or M06L) may be used instead.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1089-5639
1520-5215
DOI:10.1021/acs.jpca.0c06663