Dynamics of Imidazolium Ionic Liquids from a Combined Dielectric Relaxation and Optical Kerr Effect Study: Evidence for Mesoscopic Aggregation

We have measured the intermolecular dynamics of the 1,3-dialkylimidazolium-based room-temperature ionic liquids (RTILs) [emim][BF4], [emim][DCA], and [bmim][DCA] at 25 °C from below 1 GHz to 10 THz by ultrafast optical Kerr effect (OKE) spectroscopy and dielectric relaxation spectroscopy (DRS) augme...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 131; no. 31; pp. 11140 - 11146
Main Authors Turton, David A, Hunger, Johannes, Stoppa, Alexander, Hefter, Glenn, Thoman, Andreas, Walther, Markus, Buchner, Richard, Wynne, Klaas
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.08.2009
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have measured the intermolecular dynamics of the 1,3-dialkylimidazolium-based room-temperature ionic liquids (RTILs) [emim][BF4], [emim][DCA], and [bmim][DCA] at 25 °C from below 1 GHz to 10 THz by ultrafast optical Kerr effect (OKE) spectroscopy and dielectric relaxation spectroscopy (DRS) augmented by time-domain terahertz and far-infrared FTIR spectroscopy. This concerted approach allows a more detailed analysis to be made of the relatively featureless terahertz region, where the higher frequency diffusional modes are strongly overlapped with librations and intermolecular vibrations. Of greatest interest though, is an intense low frequency (sub-α) relaxation that we show is in accordance with recent simulations that have reported mesoscopic structure arising from aggregates or clusters—structure that explains the anomalous and inconveniently high viscosities of these liquids.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/ja903315v