Volumetric Clarifying Filtration of Urban Source Area Rainfall Runoff

Volumetric clarification is a common storm-water unit operation for hydrologic attenuation that couples particulate matter (PM) separation. Recent volumetric clarification can also include integrated filtration. This study examines the unsteady hydraulic and head loss response of a volumetric clarif...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental engineering (New York, N.Y.) Vol. 135; no. 8; pp. 609 - 620
Main Authors Sansalone, J. J, Liu, B, Kim, J.-Y
Format Journal Article
LanguageEnglish
Published Reston, VA American Society of Civil Engineers 01.08.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Volumetric clarification is a common storm-water unit operation for hydrologic attenuation that couples particulate matter (PM) separation. Recent volumetric clarification can also include integrated filtration. This study examines the unsteady hydraulic and head loss response of a volumetric clarifying filter (VCF) system to urban source area hydrologic loadings in Baton Rouge, La for 19 fully captured events. The rainfall-runoff response of the 1,088  m2 paved watershed is examined as a direct VCF loading. Watershed responses yielded two classes of behavior; high volume events with an equilibrium volumetric runoff coefficient from 0.6–0.8 while low volume events were 0.4–0.6. Runoff PM as suspended sediment concentration (SSC) yielded coarse heterodisperse influent particle-size distributions (PSDs); transformed to finer and more monodisperse PSDs after treatment. While event-mean head loss is less than 25 mm, instantaneous values up to 200 mm were dependent on instantaneous flow to the filters. Without backwashing, filter ripening head loss is small due to the coarse uniform filter media and radial filter configuration, with a loss of 2% porosity across the series of 19 events. Despite filter ripening an Ergun model was capable of predicting head loss across the entire flow rate range. Head loss and flow frequency distributions were exponential. Results indicate that a volumetric clarifier, filter geometry, and engineered media combination are capable of reducing effluent SSC to <30 mg/L through serial mechanisms of sedimentation followed by filtration.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0733-9372
1943-7870
DOI:10.1061/(ASCE)EE.1943-7870.0000044