Levitating Droplet Electroanalysis

Chemical reactions that occur in droplets proceed much differently compared to bulk phases. For instance, many groups have studied droplets during levitation by mass spectrometry and fluorescence to gain more detailed mechanistic insight. Such droplets maximize the probability of solution species in...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 96; no. 7; pp. 2764 - 2766
Main Authors Krushinski, Lynn E., Qiu, Lingqi, Dick, Jeffrey E.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 05.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chemical reactions that occur in droplets proceed much differently compared to bulk phases. For instance, many groups have studied droplets during levitation by mass spectrometry and fluorescence to gain more detailed mechanistic insight. Such droplets maximize the probability of solution species interacting with the solution–air interface, an interface that is inherently difficult to probe electrochemically. In this Technical Note, we overcome this limitation by developing a laser-pulled dual-barrel electrode. Having two microwires sealed within the same glass capillary allows one to make two-electrode measurements. We show that the electrode can be positioned within a levitating water droplet and that the voltammetry of a redox indicator (hexacyanoferrate (II/III)) can be observed in real-time. Such foundational measurement tools are important to probe a variety of chemical reactions at complex interfaces.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.3c04123