In Situ Imaging of Cysteine in the Brains of Mice with Epilepsy by a Near-Infrared Emissive Fluorescent Probe

Epilepsy is characterized by oxidative stress in the brain. As the crucial reductive biothiol, cysteine (Cys) directly regulates the occurrence of oxidative stress in the brain. Observations suggest that the decreased cysteine in plasma could potentially serve as a redox biomarker in temporal lobe e...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 92; no. 3; pp. 2802 - 2808
Main Authors Li, Songjiao, Song, Dan, Huang, Weijing, Li, Zhen, Liu, Zhihong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 04.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Epilepsy is characterized by oxidative stress in the brain. As the crucial reductive biothiol, cysteine (Cys) directly regulates the occurrence of oxidative stress in the brain. Observations suggest that the decreased cysteine in plasma could potentially serve as a redox biomarker in temporal lobe epilepsy. However, due to the complexity of the brain and lack of appropriate in situ detecting tools, the concentration change and regulation of Cys in epileptic brains remain unclear. Here, we report a near-infrared imaging probe (named Mito-CP) for tracking endogenous Cys in brains of pentylenetetrazole (PTZ)-induced epileptic seizures with high sensitivity and selectivity. Using this probe, we achieved an in situ visualization of the increased Cys in PC12 cells under dithiothreitol stimulation. In addition, Mito-CP was able to real-time monitor Cys fluctuation in lipopolysaccharide-mediated oxidative stress in zebrafish. Ultimately, we directly visualized the precipitous reduction of Cys in epileptic brains for the first time. Mito-CP also revealed the fluctuation of Cys in epileptic brains during the treatment by an antiepileptic drug, curcumin. This work provides an effective tool for Cys imaging in brains and will help to expand the understanding of the pathogenesis of epilepsy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.9b05211