Thermosensitive Hydrogels as Scaffolds for Cartilage Tissue Engineering

Articular cartilage defects, caused by trauma, osteoarthritis, or other diseases, always lead to severe joint pain and joint dysfunction. Without access to progenitor cells and the supply of blood and nutrients, the impaired articular cartilage would be short of the capability to self-repair. Althou...

Full description

Saved in:
Bibliographic Details
Published inBiomacromolecules Vol. 20; no. 4; pp. 1478 - 1492
Main Authors Zhang, Yanbo, Yu, Jiakuo, Ren, Kaixuan, Zuo, Jianlin, Ding, Jianxun, Chen, Xuesi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 08.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Articular cartilage defects, caused by trauma, osteoarthritis, or other diseases, always lead to severe joint pain and joint dysfunction. Without access to progenitor cells and the supply of blood and nutrients, the impaired articular cartilage would be short of the capability to self-repair. Although the present clinical treatments, including autogenous and allograft osteochondral transplantation, microfracture technique, and so forth, have shown some efficacies, their drawbacks, such as donor insufficiency and poor-integration with adjacent tissue, limit the satisfactory repair of articular cartilage defects and cause unsatisfied prognosis. Cartilage tissue engineering, involving the combination of progenitor cells with scaffolds, which serve as artificial extracellular matrices (ECMs), provides a promising strategy for cartilage regeneration. Recently, thermosensitive hydrogels have attracted much attention as scaffolds for cartilage tissue engineering owing to their unique physical properties analogous to the native ECM. In this review, we summarize the fabrication, characterization of newly reported thermosensitive hydrogels as cartilage tissue engineering scaffolds. The potential challenges and future perspectives are proposed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:1525-7797
1526-4602
1526-4602
DOI:10.1021/acs.biomac.9b00043