Diastereoselective [3 + 2] vs [4 + 2] Cycloadditions of Nitroprolinates with α,β-Unsaturated Aldehydes and Electrophilic Alkenes: An Example of Total Periselectivity

Diastereoselective multicomponent reactions of enantioenriched 4-nitroprolinates, obtained by enantiocatalyzed 1,3-dipolar cycloaddition (1,3-DC) of imino esters and nitroalkenes, with α,β-unsaturated aldehydes and electrophilic alkenes proceed with total periselectivity depending on the structure o...

Full description

Saved in:
Bibliographic Details
Published inJournal of organic chemistry Vol. 82; no. 12; pp. 6298 - 6312
Main Authors Selva, Verónica, Larrañaga, Olatz, Castelló, Luis M, Nájera, Carmen, Sansano, José M, de Cózar, Abel
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 16.06.2017
Amer Chemical Soc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Diastereoselective multicomponent reactions of enantioenriched 4-nitroprolinates, obtained by enantiocatalyzed 1,3-dipolar cycloaddition (1,3-DC) of imino esters and nitroalkenes, with α,β-unsaturated aldehydes and electrophilic alkenes proceed with total periselectivity depending on the structure of the aldehyde employed. This process evolves through a [3 + 2] 1,3-DC when cinnamaldehyde is used in the presence of an azomethine ylide, giving the corresponding highly substituted pyrrolizidines with endo selectivity. However, in the case of the α,β-unsaturated aldehyde, which contains a hydrogen atom at the γ position, an amine–aldehyde–dienophile (AAD) [4 + 2] cycloaddition takes place by formation of an intermediate 1-amino-1,3-diene, affording highly functionalized cyclohexenes with high endo diastereoselectivity. This AAD process only occurred when a nitro group is bonded to the 4-position of the initial enantiomerically enriched pyrrolidine ring. DFT calculations have been carried out with the aim of explaining this different behavior between pyrrolidines with or without a nitro group, demonstrating the strong nitro-group-dependent periselectivity. The results of these computational studies also support the experimentally obtained absolute configuration of the final adducts.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3263
1520-6904
DOI:10.1021/acs.joc.7b00903