Engineering Chiral Induction in Centrally Functionalized o‑Phenylenes

Work on foldamers, nonbiological oligomers that mimic the hierarchical structure of biomacromolecules, continues to yield new architectures of ever increasing complexity. o-Phenylenes, a class of helical aromatic foldamers, are well-suited to this area because of their structural simplicity and the...

Full description

Saved in:
Bibliographic Details
Published inJournal of organic chemistry Vol. 88; no. 2; pp. 788 - 795
Main Authors Peddi, Sumalatha, Livieri, Juliana M., Vemuri, Gopi Nath, Hartley, C. Scott
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 20.01.2023
Amer Chemical Soc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Work on foldamers, nonbiological oligomers that mimic the hierarchical structure of biomacromolecules, continues to yield new architectures of ever increasing complexity. o-Phenylenes, a class of helical aromatic foldamers, are well-suited to this area because of their structural simplicity and the straightforward characterization of their folding in solution. However, control of structure requires, by definition, control over folding handedness. Control over o-phenylene twist sense is currently lacking. While chiral induction from groups at o-phenylene termini has been demonstrated, it would be useful to instead direct twisting from internal positions to leave the ends free. Here, we explore chiral induction in a series of o-phenylenes with chiral imides at their centers. Conformational behavior has been studied by nuclear magnetic resonance and circular dichroism spectroscopies and density functional theory calculations. Chiral induction in otherwise unfunctionalized o-phenylenes is generally poor. However, strategic functionalization of the helix surface with trifluoromethyl or methyl groups allows it to better interact with the imide groups, greatly increasing diastereomeric excesses. The sense of chiral induction is consistent with computational models that suggest that it primarily arises from a steric effect.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3263
1520-6904
DOI:10.1021/acs.joc.2c01870