Toward Rational Design of Cu/SSZ-13 Selective Catalytic Reduction Catalysts: Implications from Atomic-Level Understanding of Hydrothermal Stability
The hydrothermal stability of Cu/SSZ-13 SCR catalysts has been extensively studied, yet atomic-level understanding of changes to the zeolite support and the Cu active sites during hydrothermal aging are still lacking. In this work, via the utilization of spectroscopic methods including solid-state 2...
Saved in:
Published in | ACS catalysis Vol. 7; no. 12; pp. 8214 - 8227 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.12.2017
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The hydrothermal stability of Cu/SSZ-13 SCR catalysts has been extensively studied, yet atomic-level understanding of changes to the zeolite support and the Cu active sites during hydrothermal aging are still lacking. In this work, via the utilization of spectroscopic methods including solid-state 27Al and 29Si NMR, EPR, DRIFTS, and XPS, together with imaging and elemental mapping using STEM, detailed kinetic analyses, and theoretical calculations with DFT, various Cu species, including two types of isolated active sites and CuOx clusters, were precisely quantified for samples hydrothermally aged under varying conditions. This quantification convincingly confirms the exceptional hydrothermal stability of isolated Cu2+-2Z sites and the gradual conversion of [Cu(OH)]+-Z to CuOx clusters with increasing aging severity. This stability difference is rationalized from the hydrolysis activation barrier difference between the two isolated sites via DFT. Discussions are provided on the nature of the CuOx clusters and their possible detrimental roles on catalyst stability. Finally, a few rational design principles for Cu/SSZ-13 are derived rigorously from the atomic-level understanding of this catalyst obtained here. |
---|---|
AbstractList | The hydrothermal stability of Cu/SSZ-13 SCR catalysts has been extensively studied, yet atomic level understanding of changes to the zeolite support and the Cu active sites during hydrothermal aging are still lacking. In this work, via the utilization of spectroscopic methods including solid-state 27Al and 29Si NMR, EPR, DRIFTS, and XPS, together with imaging and elemental mapping using STEM, detailed kinetic analyses, and theoretical calculations with DFT, various Cu species, including two types of isolated active sites and CuOx clusters, were precisely quantified for samples hydrothermally aged under varying conditions. This quantification convincingly confirms the exceptional hydrothermal stability of isolated Cu2+-2Z sites, and the gradual conversion of [Cu(OH)]+-Z to CuOx clusters with increasing aging severity. This stability difference is rationalized from the hydrolysis activation barrier difference between the two isolated sites via DFT. Discussions are provided on the nature of the CuOx clusters, and their possible detrimental roles on catalyst stability. Finally, a few rational design principles for Cu/SSZ-13 are derived rigorously from the atomic-level understanding of this catalyst obtained here. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. Computing time was granted by a user proposal at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC). The experimental studies described in this paper were performed in the EMSL, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle. The hydrothermal stability of Cu/SSZ-13 SCR catalysts has been extensively studied, yet atomic-level understanding of changes to the zeolite support and the Cu active sites during hydrothermal aging are still lacking. In this work, via the utilization of spectroscopic methods including solid-state 27Al and 29Si NMR, EPR, DRIFTS, and XPS, together with imaging and elemental mapping using STEM, detailed kinetic analyses, and theoretical calculations with DFT, various Cu species, including two types of isolated active sites and CuOx clusters, were precisely quantified for samples hydrothermally aged under varying conditions. This quantification convincingly confirms the exceptional hydrothermal stability of isolated Cu2+-2Z sites and the gradual conversion of [Cu(OH)]+-Z to CuOx clusters with increasing aging severity. This stability difference is rationalized from the hydrolysis activation barrier difference between the two isolated sites via DFT. Discussions are provided on the nature of the CuOx clusters and their possible detrimental roles on catalyst stability. Finally, a few rational design principles for Cu/SSZ-13 are derived rigorously from the atomic-level understanding of this catalyst obtained here. |
Author | Peden, Charles H. F Prodinger, Sebastian Walter, Eric D Mei, Donghai Song, James Wang, Yilin Kovarik, Libor Gao, Feng Washton, Nancy M Engelhard, Mark H Wang, Yong |
AuthorAffiliation | Environmental Molecular Sciences Laboratory Institute for Integrated Catalysis Washington State University The Gene & Linda Voiland School of Chemical Engineering and Bioengineering Pacific Northwest National Laboratory |
AuthorAffiliation_xml | – name: The Gene & Linda Voiland School of Chemical Engineering and Bioengineering – name: Washington State University – name: Institute for Integrated Catalysis – name: Pacific Northwest National Laboratory – name: Environmental Molecular Sciences Laboratory |
Author_xml | – sequence: 1 givenname: James surname: Song fullname: Song, James organization: Washington State University – sequence: 2 givenname: Yilin surname: Wang fullname: Wang, Yilin organization: Pacific Northwest National Laboratory – sequence: 3 givenname: Eric D surname: Walter fullname: Walter, Eric D organization: Pacific Northwest National Laboratory – sequence: 4 givenname: Nancy M orcidid: 0000-0002-9643-6794 surname: Washton fullname: Washton, Nancy M organization: Pacific Northwest National Laboratory – sequence: 5 givenname: Donghai orcidid: 0000-0002-0286-4182 surname: Mei fullname: Mei, Donghai email: donghai.mei@pnnl.gov organization: Pacific Northwest National Laboratory – sequence: 6 givenname: Libor surname: Kovarik fullname: Kovarik, Libor organization: Pacific Northwest National Laboratory – sequence: 7 givenname: Mark H surname: Engelhard fullname: Engelhard, Mark H organization: Pacific Northwest National Laboratory – sequence: 8 givenname: Sebastian orcidid: 0000-0001-8749-0476 surname: Prodinger fullname: Prodinger, Sebastian organization: Pacific Northwest National Laboratory – sequence: 9 givenname: Yong orcidid: 0000-0002-8460-7410 surname: Wang fullname: Wang, Yong organization: Washington State University – sequence: 10 givenname: Charles H. F surname: Peden fullname: Peden, Charles H. F organization: Pacific Northwest National Laboratory – sequence: 11 givenname: Feng orcidid: 0000-0002-8450-3419 surname: Gao fullname: Gao, Feng email: feng.gao@pnnl.gov organization: Pacific Northwest National Laboratory |
BackLink | https://www.osti.gov/biblio/1419918$$D View this record in Osti.gov |
BookMark | eNp9kV1LwzAYhYMoOD_uvQxeW5c07dp6N-bXYCBs88abkr59qxltMpJsst_hHzZzE0TQ3CS8Oc855OSEHGqjkZALzq45i3lfggPpZXudVUywmB2QXszTNEoTkR7-OB-Tc-cWLKwkHeQZ65GPuXmXtqZT6ZXRsqW36NSrpqaho1V_NnuJuKAzbBG8WiMdbVM2XgGdYr2CLbOfOe9u6Lhbtgq-rBxtrOno0JtOQTTBNbb0WddonZe6Vvp1G_G4qa3xb2i7kDzzslKt8pszctTI1uH5fj8lz_d389FjNHl6GI-Gk0iKTPgIBsiLqoCY81Rmmag4DBKZZCgq2VQsYwLyLGZcAiBP6iLJMc6rwDJWoUi4OCWXO1_jvCodKI_wBkbr8NiSJ7woeB5EbCcCa5yz2JRLqzppNyVn5bb88rv8cl9-QAa_kGD9VYq3UrX_gVc7MNyUC7Oy4UPc3_JPTFaeow |
CitedBy_id | crossref_primary_10_1016_j_apcatb_2019_04_037 crossref_primary_10_3390_catal8120593 crossref_primary_10_1021_acs_jpcc_2c01268 crossref_primary_10_1016_j_cej_2023_146114 crossref_primary_10_1021_acs_jctc_3c00942 crossref_primary_10_1016_j_jhazmat_2020_122554 crossref_primary_10_1016_j_cej_2022_134890 crossref_primary_10_1021_acs_jpcc_0c10913 crossref_primary_10_1016_j_apcatb_2023_123479 crossref_primary_10_1093_nsr_nwab010 crossref_primary_10_1016_j_checat_2024_101012 crossref_primary_10_1016_j_jes_2024_12_001 crossref_primary_10_1016_j_jhazmat_2021_126194 crossref_primary_10_1002_jccs_202400205 crossref_primary_10_1016_j_micromeso_2022_112336 crossref_primary_10_1039_D2CY00796G crossref_primary_10_1021_acscatal_2c01076 crossref_primary_10_1021_acs_jpcc_0c07971 crossref_primary_10_3390_catal11020221 crossref_primary_10_1007_s12274_023_5735_6 crossref_primary_10_1007_s10934_024_01730_5 crossref_primary_10_1016_j_apcatb_2023_122705 crossref_primary_10_1016_j_jre_2024_02_009 crossref_primary_10_1016_j_jcat_2022_08_005 crossref_primary_10_1021_acscatal_9b02773 crossref_primary_10_1016_j_apcatb_2020_118722 crossref_primary_10_2139_ssrn_4131282 crossref_primary_10_1021_acs_est_4c09820 crossref_primary_10_1021_acs_energyfuels_4c04022 crossref_primary_10_1039_C8CS00373D crossref_primary_10_1016_j_micromeso_2023_112727 crossref_primary_10_1016_j_cesx_2021_100089 crossref_primary_10_1016_j_micromeso_2023_112966 crossref_primary_10_1016_j_seppur_2024_127727 crossref_primary_10_1021_jacs_2c03877 crossref_primary_10_3390_pr10020222 crossref_primary_10_1007_s11356_023_25467_x crossref_primary_10_1007_s12239_020_0150_4 crossref_primary_10_1021_jacsau_4c00572 crossref_primary_10_1016_j_cattod_2019_06_074 crossref_primary_10_1016_j_fuel_2025_134818 crossref_primary_10_1021_acscatal_1c03752 crossref_primary_10_1039_D1CY02348A crossref_primary_10_1016_j_cjche_2021_06_012 crossref_primary_10_1016_j_apcatb_2019_118368 crossref_primary_10_1039_D2RA05107A crossref_primary_10_1016_j_cej_2024_157750 crossref_primary_10_1016_j_jcat_2020_08_033 crossref_primary_10_1021_acscatal_0c03425 crossref_primary_10_1039_D1CY00623A crossref_primary_10_1016_j_cattod_2020_06_085 crossref_primary_10_1021_acs_est_0c01743 crossref_primary_10_1016_j_cattod_2020_10_023 crossref_primary_10_1021_acs_est_2c08876 crossref_primary_10_2139_ssrn_4133225 crossref_primary_10_1021_acs_iecr_9b00353 crossref_primary_10_1088_2053_1591_abeb86 crossref_primary_10_1002_cphc_201800592 crossref_primary_10_1002_anie_201916554 crossref_primary_10_1016_j_jssc_2023_124514 crossref_primary_10_1002_adma_202003264 crossref_primary_10_1016_j_jcat_2021_11_022 crossref_primary_10_1016_j_apcata_2020_117650 crossref_primary_10_1016_j_apcata_2024_119835 crossref_primary_10_1016_j_cjche_2021_04_039 crossref_primary_10_1016_j_seppur_2024_130678 crossref_primary_10_1016_j_apcata_2017_11_021 crossref_primary_10_3390_catal12080880 crossref_primary_10_1016_j_seppur_2024_129201 crossref_primary_10_1021_acscatal_0c01590 crossref_primary_10_1039_C8CY02572J crossref_primary_10_1002_ange_201916554 crossref_primary_10_1002_cctc_202001024 crossref_primary_10_1016_j_apsusc_2021_151328 crossref_primary_10_1021_acs_iecr_8b05822 crossref_primary_10_3390_catal13040742 crossref_primary_10_1016_j_apcatb_2024_124361 crossref_primary_10_3390_catal11080979 crossref_primary_10_1021_acscatal_8b01949 crossref_primary_10_1039_D4NR00017J crossref_primary_10_1016_j_apcata_2022_118872 crossref_primary_10_1038_s41467_022_32136_z crossref_primary_10_1016_j_apcata_2024_119842 crossref_primary_10_1039_D1SC01179K crossref_primary_10_1134_S0023158420060105 crossref_primary_10_1016_j_jece_2024_112898 crossref_primary_10_1016_j_cattod_2022_08_031 crossref_primary_10_1039_D4CY00340C crossref_primary_10_1016_j_jece_2023_109404 crossref_primary_10_1016_j_cej_2019_123491 crossref_primary_10_1016_j_cej_2021_132552 crossref_primary_10_1016_j_cej_2024_153258 crossref_primary_10_3390_catal9050455 crossref_primary_10_1039_D0CY01142H crossref_primary_10_1080_01614940_2024_2445061 crossref_primary_10_1016_j_apcatb_2021_120444 crossref_primary_10_1016_j_jclepro_2023_139920 crossref_primary_10_1016_j_cej_2020_127473 crossref_primary_10_1021_acs_chemrev_9b00202 crossref_primary_10_1002_cctc_202401010 crossref_primary_10_1016_j_cej_2020_125048 crossref_primary_10_1002_anie_202411662 crossref_primary_10_1021_acscatal_9b02578 crossref_primary_10_1016_j_apcatb_2019_118359 crossref_primary_10_1021_acscatal_9b02695 crossref_primary_10_1039_D1QI01414E crossref_primary_10_1016_j_apcatb_2020_119611 crossref_primary_10_1016_j_ces_2023_118487 crossref_primary_10_1038_s41467_023_38309_8 crossref_primary_10_1007_s11244_020_01352_6 crossref_primary_10_1016_j_apsusc_2021_151105 crossref_primary_10_3390_catal13081217 crossref_primary_10_1021_jacs_2c01933 crossref_primary_10_1016_j_jhazmat_2024_135268 crossref_primary_10_3390_nano8010021 crossref_primary_10_1039_C9GC02963J crossref_primary_10_1039_D1RA05168G crossref_primary_10_1016_j_cattod_2023_114212 crossref_primary_10_1016_j_cattod_2024_114557 crossref_primary_10_1039_D3SC06422K crossref_primary_10_1016_j_jes_2024_06_041 crossref_primary_10_1021_acs_est_2c07239 crossref_primary_10_1016_j_micromeso_2022_111972 crossref_primary_10_1016_j_apcatb_2020_119749 crossref_primary_10_3390_catal14010085 crossref_primary_10_1039_D4CY00373J crossref_primary_10_1016_j_apcatb_2020_118655 crossref_primary_10_1016_j_mcat_2024_113846 crossref_primary_10_1021_acscatal_8b04437 crossref_primary_10_1021_acs_iecr_8b04543 crossref_primary_10_1039_D2CY02151J crossref_primary_10_1038_s41467_019_09021_3 crossref_primary_10_1016_j_apcata_2018_10_037 crossref_primary_10_1016_j_micromeso_2020_110851 crossref_primary_10_3390_catal10040411 crossref_primary_10_1016_j_cattod_2020_07_084 crossref_primary_10_1039_C9CY00358D crossref_primary_10_1039_D1CY02343H crossref_primary_10_1016_j_cattod_2020_07_082 crossref_primary_10_1038_s41467_020_20867_w crossref_primary_10_1039_D0CY01838D crossref_primary_10_1021_acs_jpcc_0c07072 crossref_primary_10_1016_j_apcatb_2020_118781 crossref_primary_10_20517_cs_2024_25 crossref_primary_10_1016_j_apcata_2021_118326 crossref_primary_10_1021_acs_iecr_9b06708 crossref_primary_10_1016_j_apcata_2020_117855 crossref_primary_10_1016_j_apcatb_2020_119874 crossref_primary_10_1021_jacs_3c05708 crossref_primary_10_1016_j_apcatb_2020_119193 crossref_primary_10_1016_j_jes_2024_12_017 crossref_primary_10_1016_j_cattod_2020_01_034 crossref_primary_10_1016_j_seppur_2024_127460 crossref_primary_10_1039_D2CY00745B crossref_primary_10_1016_j_apcatb_2024_123726 crossref_primary_10_1002_ange_202411662 crossref_primary_10_1007_s12274_023_5500_x crossref_primary_10_1016_j_jcat_2024_115922 crossref_primary_10_1016_j_apcatb_2021_120237 crossref_primary_10_2139_ssrn_4175039 crossref_primary_10_1038_s41929_019_0318_3 crossref_primary_10_1039_D1CC00966D crossref_primary_10_1016_j_cattod_2023_114403 crossref_primary_10_1021_acs_jpclett_0c03020 crossref_primary_10_1021_acscatal_1c03214 crossref_primary_10_1021_acsomega_8b03409 crossref_primary_10_3390_catal9090781 crossref_primary_10_1016_j_apcatb_2023_123637 crossref_primary_10_1021_acs_iecr_9b04456 crossref_primary_10_1016_j_catcom_2022_106568 crossref_primary_10_1021_acs_jpcc_8b07343 crossref_primary_10_1021_acs_jpcc_8b09764 crossref_primary_10_1016_j_chphi_2023_100207 crossref_primary_10_53941_ijamm_2024_100023 crossref_primary_10_1021_acscatal_9b04307 crossref_primary_10_3390_catal9110929 crossref_primary_10_1016_j_apcata_2018_04_040 crossref_primary_10_1007_s11696_023_03183_7 crossref_primary_10_1016_j_apcatb_2021_120245 crossref_primary_10_1016_j_jre_2020_08_016 crossref_primary_10_1021_acscatal_0c01063 crossref_primary_10_1002_ange_202306174 crossref_primary_10_1016_j_jcat_2020_11_027 crossref_primary_10_1021_acscatal_9b00759 crossref_primary_10_1039_D4CC04979A crossref_primary_10_1016_j_cej_2024_151955 crossref_primary_10_1016_j_jece_2024_114463 crossref_primary_10_1039_C8CY02033G crossref_primary_10_1016_j_apcatb_2023_123519 crossref_primary_10_1002_cctc_202200228 crossref_primary_10_1016_j_apcatb_2022_122254 crossref_primary_10_1039_D2CY00307D crossref_primary_10_1021_acs_est_3c07265 crossref_primary_10_1039_D4CY00004H crossref_primary_10_3390_catal10070807 crossref_primary_10_1016_j_apcatb_2025_125028 crossref_primary_10_1016_j_micromeso_2019_109780 crossref_primary_10_1007_s11164_018_03712_0 crossref_primary_10_1016_j_cej_2023_147399 crossref_primary_10_3389_fchem_2022_1033255 crossref_primary_10_1016_j_apcatb_2023_122673 crossref_primary_10_1016_j_apcatb_2020_119306 crossref_primary_10_1021_acsestengg_2c00068 crossref_primary_10_1021_jacs_2c06037 crossref_primary_10_1016_j_micromeso_2021_111271 crossref_primary_10_1007_s11783_020_1322_1 crossref_primary_10_1016_j_jece_2024_114936 crossref_primary_10_1021_acscatal_9b01730 crossref_primary_10_1016_j_tsep_2023_102075 crossref_primary_10_1016_j_fuel_2023_128577 crossref_primary_10_1016_j_jssc_2021_122028 crossref_primary_10_1039_D0CC07346F crossref_primary_10_1016_j_fuel_2019_05_170 crossref_primary_10_1016_j_fuel_2023_127804 crossref_primary_10_3390_catal14080503 crossref_primary_10_1002_aic_18139 crossref_primary_10_1016_j_jcat_2019_07_023 crossref_primary_10_1016_j_micromeso_2024_113007 crossref_primary_10_1016_j_micromeso_2024_113367 crossref_primary_10_1021_acs_chemmater_9b01439 crossref_primary_10_3390_catal10111324 crossref_primary_10_1016_j_cjche_2021_10_027 crossref_primary_10_1016_j_jhazmat_2020_122986 crossref_primary_10_1016_j_jcat_2020_06_041 crossref_primary_10_1016_j_mcat_2021_111914 crossref_primary_10_1016_j_jcat_2024_115442 crossref_primary_10_1039_C8CY01933A crossref_primary_10_1016_j_cattod_2024_114690 crossref_primary_10_1016_j_fuel_2023_128447 crossref_primary_10_1016_j_seppur_2024_127544 crossref_primary_10_1016_j_trechm_2020_02_003 crossref_primary_10_1016_j_apcatb_2019_01_006 crossref_primary_10_1016_j_seppur_2024_128876 crossref_primary_10_1016_j_cej_2022_140040 crossref_primary_10_1039_C9CY02186H crossref_primary_10_3390_molecules28083501 crossref_primary_10_1007_s10563_022_09384_6 crossref_primary_10_1016_j_apcatb_2022_121807 crossref_primary_10_1016_j_apcata_2022_118915 crossref_primary_10_1016_j_checat_2023_100768 crossref_primary_10_1016_j_seppur_2023_123617 crossref_primary_10_1021_acs_est_1c06068 crossref_primary_10_1002_anie_202306174 crossref_primary_10_1016_j_mtcata_2023_100037 crossref_primary_10_1016_j_memsci_2022_120782 crossref_primary_10_3390_catal9090741 crossref_primary_10_1016_j_cclet_2024_110516 crossref_primary_10_1039_D3CS00468F crossref_primary_10_1016_j_cattod_2022_06_025 crossref_primary_10_1016_j_cej_2022_139507 crossref_primary_10_1016_j_apcatb_2021_120163 crossref_primary_10_1016_j_apcatb_2023_122746 crossref_primary_10_1002_cctc_202301377 crossref_primary_10_1021_jacs_3c13725 crossref_primary_10_1016_j_cej_2021_134219 crossref_primary_10_1002_advs_202307674 crossref_primary_10_1016_j_checat_2021_11_011 crossref_primary_10_1039_D2RA04301G crossref_primary_10_1016_S1872_5813_21_60080_4 crossref_primary_10_1002_anie_202416954 crossref_primary_10_1016_j_jhazmat_2024_137048 crossref_primary_10_1016_j_jtice_2020_12_033 crossref_primary_10_1002_adma_202302912 crossref_primary_10_1016_j_apcatb_2019_02_054 crossref_primary_10_1016_j_apcatb_2019_118511 crossref_primary_10_1016_j_fuel_2023_128501 crossref_primary_10_1016_j_jtice_2022_104355 crossref_primary_10_1126_sciadv_abo3093 crossref_primary_10_1016_j_jece_2022_108305 crossref_primary_10_1016_j_apcatb_2021_120054 crossref_primary_10_1016_j_cattod_2022_06_039 crossref_primary_10_1016_j_cej_2024_149272 crossref_primary_10_1039_D1CY00975C crossref_primary_10_1016_j_jcis_2023_02_023 crossref_primary_10_1039_D3QM00813D crossref_primary_10_1016_S1872_5813_20_30081_5 crossref_primary_10_1021_jacs_3c13855 crossref_primary_10_3390_catal8040140 crossref_primary_10_3390_catal11070759 crossref_primary_10_1016_j_apcatb_2025_125107 crossref_primary_10_1021_acsami_2c03370 crossref_primary_10_1021_acs_iecr_1c02599 crossref_primary_10_1021_acscatal_1c04086 crossref_primary_10_1021_acs_jpclett_1c00181 crossref_primary_10_1021_acs_est_2c09805 crossref_primary_10_1039_D4CS00140K crossref_primary_10_1016_j_cej_2019_123080 crossref_primary_10_1039_C8RE00281A crossref_primary_10_1016_j_cattod_2018_05_029 crossref_primary_10_1016_j_jcat_2019_08_028 crossref_primary_10_1021_acsomega_9b00763 crossref_primary_10_1039_D1QM01101D crossref_primary_10_1016_j_apcatb_2020_119105 crossref_primary_10_1016_j_fuel_2023_127442 crossref_primary_10_1016_j_mcat_2021_111704 crossref_primary_10_53941_ijamm_2024_100004 crossref_primary_10_1016_j_seppur_2024_127630 crossref_primary_10_1021_acs_jpcc_8b01423 crossref_primary_10_1016_j_apcatb_2019_01_039 crossref_primary_10_1016_j_cej_2021_129433 crossref_primary_10_1016_j_apcatb_2022_121233 crossref_primary_10_1016_j_micromeso_2022_112313 crossref_primary_10_1016_j_micromeso_2021_111060 crossref_primary_10_1016_j_apcatb_2021_120867 crossref_primary_10_1021_acs_est_2c03813 crossref_primary_10_1021_acs_iecr_9b07082 crossref_primary_10_1039_C9CP01873E crossref_primary_10_3390_catal10121391 crossref_primary_10_1007_s10563_019_09283_3 crossref_primary_10_1016_j_jcat_2020_10_005 crossref_primary_10_1016_j_cej_2022_136021 crossref_primary_10_1016_j_jre_2022_07_010 crossref_primary_10_3390_nano10112170 crossref_primary_10_1021_acs_iecr_0c00285 crossref_primary_10_1021_acscatal_3c05155 crossref_primary_10_3390_catal12121499 crossref_primary_10_1002_ange_202416954 crossref_primary_10_1016_j_cattod_2019_02_037 crossref_primary_10_1021_acs_chemrev_2c00315 crossref_primary_10_1016_j_apcatb_2024_124897 crossref_primary_10_1016_j_cej_2023_145275 crossref_primary_10_1016_j_apcatb_2022_121466 crossref_primary_10_1016_j_micromeso_2020_110585 crossref_primary_10_1016_j_cej_2020_124250 |
Cites_doi | 10.1016/j.apcatb.2010.12.022 10.1039/c2cp43467a 10.1016/j.apcatb.2017.06.013 10.1021/acscatal.5b01621 10.1021/jacs.6b10169 10.1016/j.jcat.2016.04.021 10.1016/S0021-9517(02)00112-4 10.1016/j.cpc.2004.12.014 10.1557/PROC-111-235 10.1002/anie.201303498 10.1021/cs501673g 10.1016/0039-6028(94)00731-4 10.1016/j.jcat.2011.12.025 10.1039/C3CP54132K 10.1039/c1cc12469b 10.1016/j.jcat.2017.02.025 10.1021/acscatal.5b01496 10.1016/j.jcat.2014.08.010 10.1016/j.cattod.2010.03.055 10.1002/cctc.201300141 10.1103/PhysRevB.58.3641 10.1081/CR-120023908 10.1021/cs500563s 10.1063/1.2770708 10.1002/anie.201104462 10.1016/j.cattod.2015.12.002 10.1039/c2cc31184d 10.1007/s10562-012-0771-y 10.1016/S1387-1811(03)00339-1 10.1107/S2052252514020181 10.1016/j.jcat.2014.01.004 10.1016/j.jcat.2013.12.012 10.1021/acscatal.5b01200 10.1006/jcat.2002.3521 10.1021/cr00007a010 10.1146/annurev-physchem-032511-143722 10.1016/j.apcatb.2014.02.037 10.1021/jacs.6b02651 10.1016/j.apcatb.2016.08.053 10.1039/b001167n 10.1016/j.apcatb.2013.09.010 10.1039/C5CC02670A 10.1016/j.cattod.2011.10.034 10.1016/j.cattod.2013.10.047 10.1016/S0079-6816(99)00012-X 10.1081/CR-200031932 10.1002/anie.201407030 10.1021/la991011c 10.1039/C5CC05980A 10.1002/anie.200462473 10.1039/C5CS00108K 10.1021/acs.jpclett.5b00069 10.1016/j.apcatb.2014.03.030 10.1016/j.apcata.2012.03.026 10.1021/jacs.7b01128 10.1021/jp5065616 10.1103/PhysRevLett.77.3865 10.1021/acscatal.6b03679 10.1103/PhysRevB.54.1703 10.1007/978-1-4899-8071-7 10.1016/j.jcat.2014.03.003 10.1016/j.jcat.2013.10.017 10.1006/jcat.1997.1739 10.1007/s11244-013-0145-8 10.1016/j.jcat.2014.01.017 10.1016/j.apcatb.2014.10.020 10.1039/f19898504091 10.1021/jz500241m 10.1063/1.1329672 10.1016/j.jcat.2012.12.020 10.1016/j.jcat.2015.08.004 10.1021/jp4028468 10.1039/c3dt50732g |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL) |
CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL) |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1021/acscatal.7b03020 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2155-5435 |
EndPage | 8227 |
ExternalDocumentID | 1419918 10_1021_acscatal_7b03020 c49604793 |
GroupedDBID | 53G 55A 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD GNL IH9 JG JG~ RNS ROL UI2 VF5 VG9 W1F .K2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AHGAQ BAANH CITATION CUPRZ GGK ABFRP OTOTI |
ID | FETCH-LOGICAL-a373t-c6e19b9c2115a773b1c64a47e3bafb0703c87201acce14d948e28ba3700be3413 |
IEDL.DBID | ACS |
ISSN | 2155-5435 |
IngestDate | Thu May 18 18:38:53 EDT 2023 Tue Jul 01 01:35:01 EDT 2025 Thu Apr 24 23:02:14 EDT 2025 Thu Aug 27 13:42:32 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | NMR selective catalytic reduction DRIFTS Cu/SSZ-13 EPR hydrothermal aging TEM |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a373t-c6e19b9c2115a773b1c64a47e3bafb0703c87201acce14d948e28ba3700be3413 |
Notes | AC05-76RL01830 PNNL-SA-128659 USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V) |
ORCID | 0000-0002-9643-6794 0000-0001-8749-0476 0000-0002-8460-7410 0000-0002-8450-3419 0000-0002-0286-4182 0000000187490476 0000000296436794 0000000284607410 0000000202864182 0000000284503419 |
PageCount | 14 |
ParticipantIDs | osti_scitechconnect_1419918 crossref_primary_10_1021_acscatal_7b03020 crossref_citationtrail_10_1021_acscatal_7b03020 acs_journals_10_1021_acscatal_7b03020 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-01 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS catalysis |
PublicationTitleAlternate | ACS Catal |
PublicationYear | 2017 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 ref45/cit45 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 Nova I. (ref3/cit3) 2014 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref74/cit74 doi: 10.1016/j.apcatb.2010.12.022 – ident: ref15/cit15 doi: 10.1039/c2cp43467a – ident: ref34/cit34 doi: 10.1016/j.apcatb.2017.06.013 – ident: ref12/cit12 doi: 10.1021/acscatal.5b01621 – ident: ref71/cit71 doi: 10.1021/jacs.6b10169 – ident: ref65/cit65 doi: 10.1016/j.jcat.2016.04.021 – ident: ref68/cit68 doi: 10.1016/S0021-9517(02)00112-4 – ident: ref42/cit42 doi: 10.1016/j.cpc.2004.12.014 – ident: ref54/cit54 doi: 10.1557/PROC-111-235 – ident: ref14/cit14 doi: 10.1002/anie.201303498 – ident: ref25/cit25 doi: 10.1021/cs501673g – ident: ref50/cit50 doi: 10.1016/0039-6028(94)00731-4 – ident: ref5/cit5 doi: 10.1016/j.jcat.2011.12.025 – ident: ref21/cit21 doi: 10.1039/C3CP54132K – ident: ref30/cit30 doi: 10.1039/c1cc12469b – ident: ref41/cit41 doi: 10.1016/j.jcat.2017.02.025 – ident: ref48/cit48 doi: 10.1021/acscatal.5b01496 – ident: ref9/cit9 doi: 10.1016/j.jcat.2014.08.010 – ident: ref51/cit51 doi: 10.1016/j.cattod.2010.03.055 – ident: ref31/cit31 doi: 10.1002/cctc.201300141 – ident: ref44/cit44 doi: 10.1103/PhysRevB.58.3641 – ident: ref56/cit56 doi: 10.1081/CR-120023908 – ident: ref64/cit64 doi: 10.1021/acscatal.5b01496 – ident: ref24/cit24 doi: 10.1021/cs500563s – ident: ref46/cit46 doi: 10.1063/1.2770708 – ident: ref62/cit62 doi: 10.1002/anie.201104462 – ident: ref27/cit27 doi: 10.1016/j.cattod.2015.12.002 – ident: ref7/cit7 doi: 10.1039/c2cc31184d – ident: ref6/cit6 doi: 10.1007/s10562-012-0771-y – ident: ref53/cit53 doi: 10.1016/S1387-1811(03)00339-1 – ident: ref16/cit16 doi: 10.1107/S2052252514020181 – ident: ref17/cit17 doi: 10.1016/j.jcat.2014.01.004 – ident: ref39/cit39 doi: 10.1016/j.jcat.2013.12.012 – ident: ref66/cit66 doi: 10.1021/acscatal.5b01200 – ident: ref52/cit52 doi: 10.1006/jcat.2002.3521 – ident: ref57/cit57 doi: 10.1021/cr00007a010 – ident: ref67/cit67 doi: 10.1146/annurev-physchem-032511-143722 – ident: ref40/cit40 doi: 10.1016/j.apcatb.2014.02.037 – ident: ref28/cit28 doi: 10.1021/jacs.6b02651 – ident: ref11/cit11 doi: 10.1016/j.apcatb.2016.08.053 – ident: ref45/cit45 doi: 10.1039/b001167n – ident: ref61/cit61 doi: 10.1016/j.apcatb.2013.09.010 – ident: ref32/cit32 doi: 10.1039/C5CC02670A – ident: ref36/cit36 doi: 10.1016/j.cattod.2011.10.034 – ident: ref38/cit38 doi: 10.1016/j.cattod.2013.10.047 – ident: ref69/cit69 doi: 10.1016/S0079-6816(99)00012-X – ident: ref1/cit1 doi: 10.1081/CR-200031932 – ident: ref22/cit22 doi: 10.1002/anie.201407030 – ident: ref55/cit55 doi: 10.1021/la991011c – ident: ref33/cit33 doi: 10.1039/C5CC05980A – ident: ref70/cit70 doi: 10.1002/anie.200462473 – ident: ref2/cit2 doi: 10.1039/C5CS00108K – ident: ref26/cit26 doi: 10.1021/acs.jpclett.5b00069 – ident: ref35/cit35 doi: 10.1016/j.apcatb.2014.03.030 – ident: ref37/cit37 doi: 10.1016/j.apcata.2012.03.026 – ident: ref29/cit29 doi: 10.1021/jacs.7b01128 – ident: ref19/cit19 doi: 10.1021/jp5065616 – ident: ref47/cit47 doi: 10.1103/PhysRevLett.77.3865 – ident: ref59/cit59 doi: 10.1021/acscatal.6b03679 – ident: ref43/cit43 doi: 10.1103/PhysRevB.54.1703 – volume-title: Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts year: 2014 ident: ref3/cit3 doi: 10.1007/978-1-4899-8071-7 – ident: ref20/cit20 doi: 10.1016/j.jcat.2014.03.003 – ident: ref73/cit73 doi: 10.1016/j.jcat.2013.10.017 – ident: ref60/cit60 doi: 10.1006/jcat.1997.1739 – ident: ref4/cit4 doi: 10.1007/s11244-013-0145-8 – ident: ref23/cit23 doi: 10.1016/j.jcat.2014.01.017 – ident: ref72/cit72 doi: 10.1016/j.apcatb.2014.10.020 – ident: ref58/cit58 doi: 10.1039/f19898504091 – ident: ref18/cit18 doi: 10.1021/jz500241m – ident: ref49/cit49 doi: 10.1063/1.1329672 – ident: ref8/cit8 doi: 10.1016/j.jcat.2012.12.020 – ident: ref10/cit10 doi: 10.1016/j.jcat.2015.08.004 – ident: ref63/cit63 doi: 10.1021/jp4028468 – ident: ref13/cit13 doi: 10.1039/c3dt50732g |
SSID | ssj0000456870 |
Score | 2.632922 |
Snippet | The hydrothermal stability of Cu/SSZ-13 SCR catalysts has been extensively studied, yet atomic-level understanding of changes to the zeolite support and the Cu... The hydrothermal stability of Cu/SSZ-13 SCR catalysts has been extensively studied, yet atomic level understanding of changes to the zeolite support and the Cu... |
SourceID | osti crossref acs |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 8214 |
SubjectTerms | Cu/SSZ-13 DRIFTS Environmental Molecular Sciences Laboratory EPR hydrothermal aging NMR selective catalytic reduction TEM |
Title | Toward Rational Design of Cu/SSZ-13 Selective Catalytic Reduction Catalysts: Implications from Atomic-Level Understanding of Hydrothermal Stability |
URI | http://dx.doi.org/10.1021/acscatal.7b03020 https://www.osti.gov/biblio/1419918 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxELaqcKCX8mhRecqH9tCDE3bXXtvcogUUqpYDIRLisrK99oU2QezmEP4Gf5gZZ0NTQIjrase27LHnG_ubGUK-yaoSRgXBjJeacZV7pkPQzCXKBjBROhMY4Pz7PB-M-M8rcfUvTc7zF_w06RlXx5uMrrSgkCm45ytpriQ6Wv1i-HSfgtBExdpwYMQEEwAD2lfJ1xpBW-Tq_2xRZwJ7asm2nK7NixTVMSUhUkpuutPGdt39y4SN7xj2OvnUQkzan-vEBvngx5tktVhUdvtMHi4jV5ZetBeB9DjSOOgk0GLaGw6vWZLRYSyQA2chLbCDGTRGLzDPK8q03-qmPqJnS5x0itEqtN9gqDP7hXwkOlqOnsEuBrPqLoZ9_YWeAetGdu7sCxmdnlwWA9YWZ2Amk1nDXO4TbbUDB1IYKTObuJwbLn1mTbB4kDglAV0Y53zCK82VT5UF2cND69F0bpHOeDL2Xwk1Bv06YXziNHcyaBdCzqtMGA54MPBt8h1ms2w3V13Gd_M0KRdTXLZTvE16i-UsXZvhHAtt_HlD4seTxO08u8cb_-6ihpSATDC9rkMekmvAdULymNp55xh3yccUgUEkxOyRTnM39fsAaxp7EPX5ETue9NU |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxELWq9NBeoNAiSmnxAQ49OKl37fW6t2hLlULaQz6kisvK9toXIEHdzSH8Df4wM-4mBISq9mqt7ZF37Hljv5kh5L2qKmnyIJnxSjORZ57pEDRzPLcBTJROJQY4X99kg6n4dCtvtwhfxcKAEDWMVMdH_D_ZBXgP2uKFRldZ0MsEvPRtwCIJ-lv9Yry-VkGEkscScWDLJJOABtrHyf8NgibJ1X-ZpM4cttaGibl8TkZr4SKz5Gt30diu-_lP3sYnSb9HnrWAk_bvNeQF2fKzl2SnWNV52ye_JpE5S0fttSC9iKQOOg-0WPTG4y-Mp3Qcy-XAyUgLnGAJg9ERZn3FPm1b3dTn9GqDoU4xdoX2Gwx8ZkNkJ9HpZiwNTjFYVncxCOw7zAzIN3J1lwdkevlxUgxYW6qBmVSlDXOZ59pqB-6kNEqllrtMGKF8ak2weKy4XAHWMM55Liotcp_kFvqenVmPhvQV6czmM_-aUGPQy5PGc6eFU0G7EDJRpdIIQIdBHJIPsJplu9XqMr6iJ7xcLXHZLvEh6a3-aunafOdYduPbAz1O1z1-3Of6eODbI1SUEnAKJtt1yEpyDThSSCXL3zxSxndkZzC5HpbDq5vPR2Q3QcgQqTJvSae5W_hjADyNPYkq_hvZgf02 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELZQKrVcaMtDBPrwgR44OGGz9nrdW7Q0CuUhREiFuKxsr32hTRC7OaR_o3-4M8aJUlSh9rpaP9Y79nzj-WaGkANZVULnXjDtpGI8zxxT3itmk9x4UFEqFRjgfH6RDcf86424WSNiEQsDk6ihpzo48XFX31c-ZhhIuvA8XGp0pAHZ7IGl_gK9dmhz9YvR8moFUUoeysSBPhNMACKIDsq_dYJqydZ_qKXWFLbXipoZvCbflhMM7JK7zqwxHfvzSe7G__6CN2QjAk_af5SUt2TNTTbJq2JR722L_LoODFp6Fa8H6XEgd9Cpp8WsOxrdsiSlo1A2B05IWuAAc-iMXmH2V2wTn9VN_ZmerDDVKcaw0H6DAdDsDFlKdLwaU4NDDOfVQwgG-wEjAwIOnN35NhkPvlwXQxZLNjCdyrRhNnOJMsqCWSm0lKlJbMY1ly412hs8XmwuAXNoa13CK8Vz18sNtD06Mg4V6g5pTaYTt0uo1mjtCe0Sq7iVXlnvM16lQnNAiZ63ySdYzTJuuboM3vReUi6WuIxL3CbdxZ8tbcx7juU3vj_T4nDZ4v4x58cz7-6jsJSAVzDprkV2km3AoEJKWb73j3P8SF5eHg_Ks5OL032y3kPkEBgz70ireZi594B7GvMhSPlv_4__uQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Rational+Design+of+Cu%2FSSZ-13+Selective+Catalytic+Reduction+Catalysts%3A+Implications+from+Atomic-Level+Understanding+of+Hydrothermal+Stability&rft.jtitle=ACS+catalysis&rft.au=Song%2C+James&rft.au=Wang%2C+Yilin&rft.au=Walter%2C+Eric+D.&rft.au=Washton%2C+Nancy+M.&rft.date=2017-12-01&rft.pub=American+Chemical+Society+%28ACS%29&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=7&rft.issue=12&rft_id=info:doi/10.1021%2Facscatal.7b03020&rft.externalDocID=1419918 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon |