Toward Rational Design of Cu/SSZ-13 Selective Catalytic Reduction Catalysts: Implications from Atomic-Level Understanding of Hydrothermal Stability

The hydrothermal stability of Cu/SSZ-13 SCR catalysts has been extensively studied, yet atomic-level understanding of changes to the zeolite support and the Cu active sites during hydrothermal aging are still lacking. In this work, via the utilization of spectroscopic methods including solid-state 2...

Full description

Saved in:
Bibliographic Details
Published inACS catalysis Vol. 7; no. 12; pp. 8214 - 8227
Main Authors Song, James, Wang, Yilin, Walter, Eric D, Washton, Nancy M, Mei, Donghai, Kovarik, Libor, Engelhard, Mark H, Prodinger, Sebastian, Wang, Yong, Peden, Charles H. F, Gao, Feng
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.12.2017
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The hydrothermal stability of Cu/SSZ-13 SCR catalysts has been extensively studied, yet atomic-level understanding of changes to the zeolite support and the Cu active sites during hydrothermal aging are still lacking. In this work, via the utilization of spectroscopic methods including solid-state 27Al and 29Si NMR, EPR, DRIFTS, and XPS, together with imaging and elemental mapping using STEM, detailed kinetic analyses, and theoretical calculations with DFT, various Cu species, including two types of isolated active sites and CuOx clusters, were precisely quantified for samples hydrothermally aged under varying conditions. This quantification convincingly confirms the exceptional hydrothermal stability of isolated Cu2+-2Z sites and the gradual conversion of [Cu­(OH)]+-Z to CuOx clusters with increasing aging severity. This stability difference is rationalized from the hydrolysis activation barrier difference between the two isolated sites via DFT. Discussions are provided on the nature of the CuOx clusters and their possible detrimental roles on catalyst stability. Finally, a few rational design principles for Cu/SSZ-13 are derived rigorously from the atomic-level understanding of this catalyst obtained here.
AbstractList The hydrothermal stability of Cu/SSZ-13 SCR catalysts has been extensively studied, yet atomic level understanding of changes to the zeolite support and the Cu active sites during hydrothermal aging are still lacking. In this work, via the utilization of spectroscopic methods including solid-state 27Al and 29Si NMR, EPR, DRIFTS, and XPS, together with imaging and elemental mapping using STEM, detailed kinetic analyses, and theoretical calculations with DFT, various Cu species, including two types of isolated active sites and CuOx clusters, were precisely quantified for samples hydrothermally aged under varying conditions. This quantification convincingly confirms the exceptional hydrothermal stability of isolated Cu2+-2Z sites, and the gradual conversion of [Cu(OH)]+-Z to CuOx clusters with increasing aging severity. This stability difference is rationalized from the hydrolysis activation barrier difference between the two isolated sites via DFT. Discussions are provided on the nature of the CuOx clusters, and their possible detrimental roles on catalyst stability. Finally, a few rational design principles for Cu/SSZ-13 are derived rigorously from the atomic-level understanding of this catalyst obtained here. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. Computing time was granted by a user proposal at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC). The experimental studies described in this paper were performed in the EMSL, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.
The hydrothermal stability of Cu/SSZ-13 SCR catalysts has been extensively studied, yet atomic-level understanding of changes to the zeolite support and the Cu active sites during hydrothermal aging are still lacking. In this work, via the utilization of spectroscopic methods including solid-state 27Al and 29Si NMR, EPR, DRIFTS, and XPS, together with imaging and elemental mapping using STEM, detailed kinetic analyses, and theoretical calculations with DFT, various Cu species, including two types of isolated active sites and CuOx clusters, were precisely quantified for samples hydrothermally aged under varying conditions. This quantification convincingly confirms the exceptional hydrothermal stability of isolated Cu2+-2Z sites and the gradual conversion of [Cu­(OH)]+-Z to CuOx clusters with increasing aging severity. This stability difference is rationalized from the hydrolysis activation barrier difference between the two isolated sites via DFT. Discussions are provided on the nature of the CuOx clusters and their possible detrimental roles on catalyst stability. Finally, a few rational design principles for Cu/SSZ-13 are derived rigorously from the atomic-level understanding of this catalyst obtained here.
Author Peden, Charles H. F
Prodinger, Sebastian
Walter, Eric D
Mei, Donghai
Song, James
Wang, Yilin
Kovarik, Libor
Gao, Feng
Washton, Nancy M
Engelhard, Mark H
Wang, Yong
AuthorAffiliation Environmental Molecular Sciences Laboratory
Institute for Integrated Catalysis
Washington State University
The Gene & Linda Voiland School of Chemical Engineering and Bioengineering
Pacific Northwest National Laboratory
AuthorAffiliation_xml – name: The Gene & Linda Voiland School of Chemical Engineering and Bioengineering
– name: Washington State University
– name: Institute for Integrated Catalysis
– name: Pacific Northwest National Laboratory
– name: Environmental Molecular Sciences Laboratory
Author_xml – sequence: 1
  givenname: James
  surname: Song
  fullname: Song, James
  organization: Washington State University
– sequence: 2
  givenname: Yilin
  surname: Wang
  fullname: Wang, Yilin
  organization: Pacific Northwest National Laboratory
– sequence: 3
  givenname: Eric D
  surname: Walter
  fullname: Walter, Eric D
  organization: Pacific Northwest National Laboratory
– sequence: 4
  givenname: Nancy M
  orcidid: 0000-0002-9643-6794
  surname: Washton
  fullname: Washton, Nancy M
  organization: Pacific Northwest National Laboratory
– sequence: 5
  givenname: Donghai
  orcidid: 0000-0002-0286-4182
  surname: Mei
  fullname: Mei, Donghai
  email: donghai.mei@pnnl.gov
  organization: Pacific Northwest National Laboratory
– sequence: 6
  givenname: Libor
  surname: Kovarik
  fullname: Kovarik, Libor
  organization: Pacific Northwest National Laboratory
– sequence: 7
  givenname: Mark H
  surname: Engelhard
  fullname: Engelhard, Mark H
  organization: Pacific Northwest National Laboratory
– sequence: 8
  givenname: Sebastian
  orcidid: 0000-0001-8749-0476
  surname: Prodinger
  fullname: Prodinger, Sebastian
  organization: Pacific Northwest National Laboratory
– sequence: 9
  givenname: Yong
  orcidid: 0000-0002-8460-7410
  surname: Wang
  fullname: Wang, Yong
  organization: Washington State University
– sequence: 10
  givenname: Charles H. F
  surname: Peden
  fullname: Peden, Charles H. F
  organization: Pacific Northwest National Laboratory
– sequence: 11
  givenname: Feng
  orcidid: 0000-0002-8450-3419
  surname: Gao
  fullname: Gao, Feng
  email: feng.gao@pnnl.gov
  organization: Pacific Northwest National Laboratory
BackLink https://www.osti.gov/biblio/1419918$$D View this record in Osti.gov
BookMark eNp9kV1LwzAYhYMoOD_uvQxeW5c07dp6N-bXYCBs88abkr59qxltMpJsst_hHzZzE0TQ3CS8Oc855OSEHGqjkZALzq45i3lfggPpZXudVUywmB2QXszTNEoTkR7-OB-Tc-cWLKwkHeQZ65GPuXmXtqZT6ZXRsqW36NSrpqaho1V_NnuJuKAzbBG8WiMdbVM2XgGdYr2CLbOfOe9u6Lhbtgq-rBxtrOno0JtOQTTBNbb0WddonZe6Vvp1G_G4qa3xb2i7kDzzslKt8pszctTI1uH5fj8lz_d389FjNHl6GI-Gk0iKTPgIBsiLqoCY81Rmmag4DBKZZCgq2VQsYwLyLGZcAiBP6iLJMc6rwDJWoUi4OCWXO1_jvCodKI_wBkbr8NiSJ7woeB5EbCcCa5yz2JRLqzppNyVn5bb88rv8cl9-QAa_kGD9VYq3UrX_gVc7MNyUC7Oy4UPc3_JPTFaeow
CitedBy_id crossref_primary_10_1016_j_apcatb_2019_04_037
crossref_primary_10_3390_catal8120593
crossref_primary_10_1021_acs_jpcc_2c01268
crossref_primary_10_1016_j_cej_2023_146114
crossref_primary_10_1021_acs_jctc_3c00942
crossref_primary_10_1016_j_jhazmat_2020_122554
crossref_primary_10_1016_j_cej_2022_134890
crossref_primary_10_1021_acs_jpcc_0c10913
crossref_primary_10_1016_j_apcatb_2023_123479
crossref_primary_10_1093_nsr_nwab010
crossref_primary_10_1016_j_checat_2024_101012
crossref_primary_10_1016_j_jes_2024_12_001
crossref_primary_10_1016_j_jhazmat_2021_126194
crossref_primary_10_1002_jccs_202400205
crossref_primary_10_1016_j_micromeso_2022_112336
crossref_primary_10_1039_D2CY00796G
crossref_primary_10_1021_acscatal_2c01076
crossref_primary_10_1021_acs_jpcc_0c07971
crossref_primary_10_3390_catal11020221
crossref_primary_10_1007_s12274_023_5735_6
crossref_primary_10_1007_s10934_024_01730_5
crossref_primary_10_1016_j_apcatb_2023_122705
crossref_primary_10_1016_j_jre_2024_02_009
crossref_primary_10_1016_j_jcat_2022_08_005
crossref_primary_10_1021_acscatal_9b02773
crossref_primary_10_1016_j_apcatb_2020_118722
crossref_primary_10_2139_ssrn_4131282
crossref_primary_10_1021_acs_est_4c09820
crossref_primary_10_1021_acs_energyfuels_4c04022
crossref_primary_10_1039_C8CS00373D
crossref_primary_10_1016_j_micromeso_2023_112727
crossref_primary_10_1016_j_cesx_2021_100089
crossref_primary_10_1016_j_micromeso_2023_112966
crossref_primary_10_1016_j_seppur_2024_127727
crossref_primary_10_1021_jacs_2c03877
crossref_primary_10_3390_pr10020222
crossref_primary_10_1007_s11356_023_25467_x
crossref_primary_10_1007_s12239_020_0150_4
crossref_primary_10_1021_jacsau_4c00572
crossref_primary_10_1016_j_cattod_2019_06_074
crossref_primary_10_1016_j_fuel_2025_134818
crossref_primary_10_1021_acscatal_1c03752
crossref_primary_10_1039_D1CY02348A
crossref_primary_10_1016_j_cjche_2021_06_012
crossref_primary_10_1016_j_apcatb_2019_118368
crossref_primary_10_1039_D2RA05107A
crossref_primary_10_1016_j_cej_2024_157750
crossref_primary_10_1016_j_jcat_2020_08_033
crossref_primary_10_1021_acscatal_0c03425
crossref_primary_10_1039_D1CY00623A
crossref_primary_10_1016_j_cattod_2020_06_085
crossref_primary_10_1021_acs_est_0c01743
crossref_primary_10_1016_j_cattod_2020_10_023
crossref_primary_10_1021_acs_est_2c08876
crossref_primary_10_2139_ssrn_4133225
crossref_primary_10_1021_acs_iecr_9b00353
crossref_primary_10_1088_2053_1591_abeb86
crossref_primary_10_1002_cphc_201800592
crossref_primary_10_1002_anie_201916554
crossref_primary_10_1016_j_jssc_2023_124514
crossref_primary_10_1002_adma_202003264
crossref_primary_10_1016_j_jcat_2021_11_022
crossref_primary_10_1016_j_apcata_2020_117650
crossref_primary_10_1016_j_apcata_2024_119835
crossref_primary_10_1016_j_cjche_2021_04_039
crossref_primary_10_1016_j_seppur_2024_130678
crossref_primary_10_1016_j_apcata_2017_11_021
crossref_primary_10_3390_catal12080880
crossref_primary_10_1016_j_seppur_2024_129201
crossref_primary_10_1021_acscatal_0c01590
crossref_primary_10_1039_C8CY02572J
crossref_primary_10_1002_ange_201916554
crossref_primary_10_1002_cctc_202001024
crossref_primary_10_1016_j_apsusc_2021_151328
crossref_primary_10_1021_acs_iecr_8b05822
crossref_primary_10_3390_catal13040742
crossref_primary_10_1016_j_apcatb_2024_124361
crossref_primary_10_3390_catal11080979
crossref_primary_10_1021_acscatal_8b01949
crossref_primary_10_1039_D4NR00017J
crossref_primary_10_1016_j_apcata_2022_118872
crossref_primary_10_1038_s41467_022_32136_z
crossref_primary_10_1016_j_apcata_2024_119842
crossref_primary_10_1039_D1SC01179K
crossref_primary_10_1134_S0023158420060105
crossref_primary_10_1016_j_jece_2024_112898
crossref_primary_10_1016_j_cattod_2022_08_031
crossref_primary_10_1039_D4CY00340C
crossref_primary_10_1016_j_jece_2023_109404
crossref_primary_10_1016_j_cej_2019_123491
crossref_primary_10_1016_j_cej_2021_132552
crossref_primary_10_1016_j_cej_2024_153258
crossref_primary_10_3390_catal9050455
crossref_primary_10_1039_D0CY01142H
crossref_primary_10_1080_01614940_2024_2445061
crossref_primary_10_1016_j_apcatb_2021_120444
crossref_primary_10_1016_j_jclepro_2023_139920
crossref_primary_10_1016_j_cej_2020_127473
crossref_primary_10_1021_acs_chemrev_9b00202
crossref_primary_10_1002_cctc_202401010
crossref_primary_10_1016_j_cej_2020_125048
crossref_primary_10_1002_anie_202411662
crossref_primary_10_1021_acscatal_9b02578
crossref_primary_10_1016_j_apcatb_2019_118359
crossref_primary_10_1021_acscatal_9b02695
crossref_primary_10_1039_D1QI01414E
crossref_primary_10_1016_j_apcatb_2020_119611
crossref_primary_10_1016_j_ces_2023_118487
crossref_primary_10_1038_s41467_023_38309_8
crossref_primary_10_1007_s11244_020_01352_6
crossref_primary_10_1016_j_apsusc_2021_151105
crossref_primary_10_3390_catal13081217
crossref_primary_10_1021_jacs_2c01933
crossref_primary_10_1016_j_jhazmat_2024_135268
crossref_primary_10_3390_nano8010021
crossref_primary_10_1039_C9GC02963J
crossref_primary_10_1039_D1RA05168G
crossref_primary_10_1016_j_cattod_2023_114212
crossref_primary_10_1016_j_cattod_2024_114557
crossref_primary_10_1039_D3SC06422K
crossref_primary_10_1016_j_jes_2024_06_041
crossref_primary_10_1021_acs_est_2c07239
crossref_primary_10_1016_j_micromeso_2022_111972
crossref_primary_10_1016_j_apcatb_2020_119749
crossref_primary_10_3390_catal14010085
crossref_primary_10_1039_D4CY00373J
crossref_primary_10_1016_j_apcatb_2020_118655
crossref_primary_10_1016_j_mcat_2024_113846
crossref_primary_10_1021_acscatal_8b04437
crossref_primary_10_1021_acs_iecr_8b04543
crossref_primary_10_1039_D2CY02151J
crossref_primary_10_1038_s41467_019_09021_3
crossref_primary_10_1016_j_apcata_2018_10_037
crossref_primary_10_1016_j_micromeso_2020_110851
crossref_primary_10_3390_catal10040411
crossref_primary_10_1016_j_cattod_2020_07_084
crossref_primary_10_1039_C9CY00358D
crossref_primary_10_1039_D1CY02343H
crossref_primary_10_1016_j_cattod_2020_07_082
crossref_primary_10_1038_s41467_020_20867_w
crossref_primary_10_1039_D0CY01838D
crossref_primary_10_1021_acs_jpcc_0c07072
crossref_primary_10_1016_j_apcatb_2020_118781
crossref_primary_10_20517_cs_2024_25
crossref_primary_10_1016_j_apcata_2021_118326
crossref_primary_10_1021_acs_iecr_9b06708
crossref_primary_10_1016_j_apcata_2020_117855
crossref_primary_10_1016_j_apcatb_2020_119874
crossref_primary_10_1021_jacs_3c05708
crossref_primary_10_1016_j_apcatb_2020_119193
crossref_primary_10_1016_j_jes_2024_12_017
crossref_primary_10_1016_j_cattod_2020_01_034
crossref_primary_10_1016_j_seppur_2024_127460
crossref_primary_10_1039_D2CY00745B
crossref_primary_10_1016_j_apcatb_2024_123726
crossref_primary_10_1002_ange_202411662
crossref_primary_10_1007_s12274_023_5500_x
crossref_primary_10_1016_j_jcat_2024_115922
crossref_primary_10_1016_j_apcatb_2021_120237
crossref_primary_10_2139_ssrn_4175039
crossref_primary_10_1038_s41929_019_0318_3
crossref_primary_10_1039_D1CC00966D
crossref_primary_10_1016_j_cattod_2023_114403
crossref_primary_10_1021_acs_jpclett_0c03020
crossref_primary_10_1021_acscatal_1c03214
crossref_primary_10_1021_acsomega_8b03409
crossref_primary_10_3390_catal9090781
crossref_primary_10_1016_j_apcatb_2023_123637
crossref_primary_10_1021_acs_iecr_9b04456
crossref_primary_10_1016_j_catcom_2022_106568
crossref_primary_10_1021_acs_jpcc_8b07343
crossref_primary_10_1021_acs_jpcc_8b09764
crossref_primary_10_1016_j_chphi_2023_100207
crossref_primary_10_53941_ijamm_2024_100023
crossref_primary_10_1021_acscatal_9b04307
crossref_primary_10_3390_catal9110929
crossref_primary_10_1016_j_apcata_2018_04_040
crossref_primary_10_1007_s11696_023_03183_7
crossref_primary_10_1016_j_apcatb_2021_120245
crossref_primary_10_1016_j_jre_2020_08_016
crossref_primary_10_1021_acscatal_0c01063
crossref_primary_10_1002_ange_202306174
crossref_primary_10_1016_j_jcat_2020_11_027
crossref_primary_10_1021_acscatal_9b00759
crossref_primary_10_1039_D4CC04979A
crossref_primary_10_1016_j_cej_2024_151955
crossref_primary_10_1016_j_jece_2024_114463
crossref_primary_10_1039_C8CY02033G
crossref_primary_10_1016_j_apcatb_2023_123519
crossref_primary_10_1002_cctc_202200228
crossref_primary_10_1016_j_apcatb_2022_122254
crossref_primary_10_1039_D2CY00307D
crossref_primary_10_1021_acs_est_3c07265
crossref_primary_10_1039_D4CY00004H
crossref_primary_10_3390_catal10070807
crossref_primary_10_1016_j_apcatb_2025_125028
crossref_primary_10_1016_j_micromeso_2019_109780
crossref_primary_10_1007_s11164_018_03712_0
crossref_primary_10_1016_j_cej_2023_147399
crossref_primary_10_3389_fchem_2022_1033255
crossref_primary_10_1016_j_apcatb_2023_122673
crossref_primary_10_1016_j_apcatb_2020_119306
crossref_primary_10_1021_acsestengg_2c00068
crossref_primary_10_1021_jacs_2c06037
crossref_primary_10_1016_j_micromeso_2021_111271
crossref_primary_10_1007_s11783_020_1322_1
crossref_primary_10_1016_j_jece_2024_114936
crossref_primary_10_1021_acscatal_9b01730
crossref_primary_10_1016_j_tsep_2023_102075
crossref_primary_10_1016_j_fuel_2023_128577
crossref_primary_10_1016_j_jssc_2021_122028
crossref_primary_10_1039_D0CC07346F
crossref_primary_10_1016_j_fuel_2019_05_170
crossref_primary_10_1016_j_fuel_2023_127804
crossref_primary_10_3390_catal14080503
crossref_primary_10_1002_aic_18139
crossref_primary_10_1016_j_jcat_2019_07_023
crossref_primary_10_1016_j_micromeso_2024_113007
crossref_primary_10_1016_j_micromeso_2024_113367
crossref_primary_10_1021_acs_chemmater_9b01439
crossref_primary_10_3390_catal10111324
crossref_primary_10_1016_j_cjche_2021_10_027
crossref_primary_10_1016_j_jhazmat_2020_122986
crossref_primary_10_1016_j_jcat_2020_06_041
crossref_primary_10_1016_j_mcat_2021_111914
crossref_primary_10_1016_j_jcat_2024_115442
crossref_primary_10_1039_C8CY01933A
crossref_primary_10_1016_j_cattod_2024_114690
crossref_primary_10_1016_j_fuel_2023_128447
crossref_primary_10_1016_j_seppur_2024_127544
crossref_primary_10_1016_j_trechm_2020_02_003
crossref_primary_10_1016_j_apcatb_2019_01_006
crossref_primary_10_1016_j_seppur_2024_128876
crossref_primary_10_1016_j_cej_2022_140040
crossref_primary_10_1039_C9CY02186H
crossref_primary_10_3390_molecules28083501
crossref_primary_10_1007_s10563_022_09384_6
crossref_primary_10_1016_j_apcatb_2022_121807
crossref_primary_10_1016_j_apcata_2022_118915
crossref_primary_10_1016_j_checat_2023_100768
crossref_primary_10_1016_j_seppur_2023_123617
crossref_primary_10_1021_acs_est_1c06068
crossref_primary_10_1002_anie_202306174
crossref_primary_10_1016_j_mtcata_2023_100037
crossref_primary_10_1016_j_memsci_2022_120782
crossref_primary_10_3390_catal9090741
crossref_primary_10_1016_j_cclet_2024_110516
crossref_primary_10_1039_D3CS00468F
crossref_primary_10_1016_j_cattod_2022_06_025
crossref_primary_10_1016_j_cej_2022_139507
crossref_primary_10_1016_j_apcatb_2021_120163
crossref_primary_10_1016_j_apcatb_2023_122746
crossref_primary_10_1002_cctc_202301377
crossref_primary_10_1021_jacs_3c13725
crossref_primary_10_1016_j_cej_2021_134219
crossref_primary_10_1002_advs_202307674
crossref_primary_10_1016_j_checat_2021_11_011
crossref_primary_10_1039_D2RA04301G
crossref_primary_10_1016_S1872_5813_21_60080_4
crossref_primary_10_1002_anie_202416954
crossref_primary_10_1016_j_jhazmat_2024_137048
crossref_primary_10_1016_j_jtice_2020_12_033
crossref_primary_10_1002_adma_202302912
crossref_primary_10_1016_j_apcatb_2019_02_054
crossref_primary_10_1016_j_apcatb_2019_118511
crossref_primary_10_1016_j_fuel_2023_128501
crossref_primary_10_1016_j_jtice_2022_104355
crossref_primary_10_1126_sciadv_abo3093
crossref_primary_10_1016_j_jece_2022_108305
crossref_primary_10_1016_j_apcatb_2021_120054
crossref_primary_10_1016_j_cattod_2022_06_039
crossref_primary_10_1016_j_cej_2024_149272
crossref_primary_10_1039_D1CY00975C
crossref_primary_10_1016_j_jcis_2023_02_023
crossref_primary_10_1039_D3QM00813D
crossref_primary_10_1016_S1872_5813_20_30081_5
crossref_primary_10_1021_jacs_3c13855
crossref_primary_10_3390_catal8040140
crossref_primary_10_3390_catal11070759
crossref_primary_10_1016_j_apcatb_2025_125107
crossref_primary_10_1021_acsami_2c03370
crossref_primary_10_1021_acs_iecr_1c02599
crossref_primary_10_1021_acscatal_1c04086
crossref_primary_10_1021_acs_jpclett_1c00181
crossref_primary_10_1021_acs_est_2c09805
crossref_primary_10_1039_D4CS00140K
crossref_primary_10_1016_j_cej_2019_123080
crossref_primary_10_1039_C8RE00281A
crossref_primary_10_1016_j_cattod_2018_05_029
crossref_primary_10_1016_j_jcat_2019_08_028
crossref_primary_10_1021_acsomega_9b00763
crossref_primary_10_1039_D1QM01101D
crossref_primary_10_1016_j_apcatb_2020_119105
crossref_primary_10_1016_j_fuel_2023_127442
crossref_primary_10_1016_j_mcat_2021_111704
crossref_primary_10_53941_ijamm_2024_100004
crossref_primary_10_1016_j_seppur_2024_127630
crossref_primary_10_1021_acs_jpcc_8b01423
crossref_primary_10_1016_j_apcatb_2019_01_039
crossref_primary_10_1016_j_cej_2021_129433
crossref_primary_10_1016_j_apcatb_2022_121233
crossref_primary_10_1016_j_micromeso_2022_112313
crossref_primary_10_1016_j_micromeso_2021_111060
crossref_primary_10_1016_j_apcatb_2021_120867
crossref_primary_10_1021_acs_est_2c03813
crossref_primary_10_1021_acs_iecr_9b07082
crossref_primary_10_1039_C9CP01873E
crossref_primary_10_3390_catal10121391
crossref_primary_10_1007_s10563_019_09283_3
crossref_primary_10_1016_j_jcat_2020_10_005
crossref_primary_10_1016_j_cej_2022_136021
crossref_primary_10_1016_j_jre_2022_07_010
crossref_primary_10_3390_nano10112170
crossref_primary_10_1021_acs_iecr_0c00285
crossref_primary_10_1021_acscatal_3c05155
crossref_primary_10_3390_catal12121499
crossref_primary_10_1002_ange_202416954
crossref_primary_10_1016_j_cattod_2019_02_037
crossref_primary_10_1021_acs_chemrev_2c00315
crossref_primary_10_1016_j_apcatb_2024_124897
crossref_primary_10_1016_j_cej_2023_145275
crossref_primary_10_1016_j_apcatb_2022_121466
crossref_primary_10_1016_j_micromeso_2020_110585
crossref_primary_10_1016_j_cej_2020_124250
Cites_doi 10.1016/j.apcatb.2010.12.022
10.1039/c2cp43467a
10.1016/j.apcatb.2017.06.013
10.1021/acscatal.5b01621
10.1021/jacs.6b10169
10.1016/j.jcat.2016.04.021
10.1016/S0021-9517(02)00112-4
10.1016/j.cpc.2004.12.014
10.1557/PROC-111-235
10.1002/anie.201303498
10.1021/cs501673g
10.1016/0039-6028(94)00731-4
10.1016/j.jcat.2011.12.025
10.1039/C3CP54132K
10.1039/c1cc12469b
10.1016/j.jcat.2017.02.025
10.1021/acscatal.5b01496
10.1016/j.jcat.2014.08.010
10.1016/j.cattod.2010.03.055
10.1002/cctc.201300141
10.1103/PhysRevB.58.3641
10.1081/CR-120023908
10.1021/cs500563s
10.1063/1.2770708
10.1002/anie.201104462
10.1016/j.cattod.2015.12.002
10.1039/c2cc31184d
10.1007/s10562-012-0771-y
10.1016/S1387-1811(03)00339-1
10.1107/S2052252514020181
10.1016/j.jcat.2014.01.004
10.1016/j.jcat.2013.12.012
10.1021/acscatal.5b01200
10.1006/jcat.2002.3521
10.1021/cr00007a010
10.1146/annurev-physchem-032511-143722
10.1016/j.apcatb.2014.02.037
10.1021/jacs.6b02651
10.1016/j.apcatb.2016.08.053
10.1039/b001167n
10.1016/j.apcatb.2013.09.010
10.1039/C5CC02670A
10.1016/j.cattod.2011.10.034
10.1016/j.cattod.2013.10.047
10.1016/S0079-6816(99)00012-X
10.1081/CR-200031932
10.1002/anie.201407030
10.1021/la991011c
10.1039/C5CC05980A
10.1002/anie.200462473
10.1039/C5CS00108K
10.1021/acs.jpclett.5b00069
10.1016/j.apcatb.2014.03.030
10.1016/j.apcata.2012.03.026
10.1021/jacs.7b01128
10.1021/jp5065616
10.1103/PhysRevLett.77.3865
10.1021/acscatal.6b03679
10.1103/PhysRevB.54.1703
10.1007/978-1-4899-8071-7
10.1016/j.jcat.2014.03.003
10.1016/j.jcat.2013.10.017
10.1006/jcat.1997.1739
10.1007/s11244-013-0145-8
10.1016/j.jcat.2014.01.017
10.1016/j.apcatb.2014.10.020
10.1039/f19898504091
10.1021/jz500241m
10.1063/1.1329672
10.1016/j.jcat.2012.12.020
10.1016/j.jcat.2015.08.004
10.1021/jp4028468
10.1039/c3dt50732g
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
CorporateAuthor Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
CorporateAuthor_xml – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
DBID AAYXX
CITATION
OTOTI
DOI 10.1021/acscatal.7b03020
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2155-5435
EndPage 8227
ExternalDocumentID 1419918
10_1021_acscatal_7b03020
c49604793
GroupedDBID 53G
55A
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
GNL
IH9
JG
JG~
RNS
ROL
UI2
VF5
VG9
W1F
.K2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ABFRP
OTOTI
ID FETCH-LOGICAL-a373t-c6e19b9c2115a773b1c64a47e3bafb0703c87201acce14d948e28ba3700be3413
IEDL.DBID ACS
ISSN 2155-5435
IngestDate Thu May 18 18:38:53 EDT 2023
Tue Jul 01 01:35:01 EDT 2025
Thu Apr 24 23:02:14 EDT 2025
Thu Aug 27 13:42:32 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords NMR
selective catalytic reduction
DRIFTS
Cu/SSZ-13
EPR
hydrothermal aging
TEM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a373t-c6e19b9c2115a773b1c64a47e3bafb0703c87201acce14d948e28ba3700be3413
Notes AC05-76RL01830
PNNL-SA-128659
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
ORCID 0000-0002-9643-6794
0000-0001-8749-0476
0000-0002-8460-7410
0000-0002-8450-3419
0000-0002-0286-4182
0000000187490476
0000000296436794
0000000284607410
0000000202864182
0000000284503419
PageCount 14
ParticipantIDs osti_scitechconnect_1419918
crossref_primary_10_1021_acscatal_7b03020
crossref_citationtrail_10_1021_acscatal_7b03020
acs_journals_10_1021_acscatal_7b03020
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS catalysis
PublicationTitleAlternate ACS Catal
PublicationYear 2017
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref45/cit45
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
Nova I. (ref3/cit3) 2014
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref74/cit74
  doi: 10.1016/j.apcatb.2010.12.022
– ident: ref15/cit15
  doi: 10.1039/c2cp43467a
– ident: ref34/cit34
  doi: 10.1016/j.apcatb.2017.06.013
– ident: ref12/cit12
  doi: 10.1021/acscatal.5b01621
– ident: ref71/cit71
  doi: 10.1021/jacs.6b10169
– ident: ref65/cit65
  doi: 10.1016/j.jcat.2016.04.021
– ident: ref68/cit68
  doi: 10.1016/S0021-9517(02)00112-4
– ident: ref42/cit42
  doi: 10.1016/j.cpc.2004.12.014
– ident: ref54/cit54
  doi: 10.1557/PROC-111-235
– ident: ref14/cit14
  doi: 10.1002/anie.201303498
– ident: ref25/cit25
  doi: 10.1021/cs501673g
– ident: ref50/cit50
  doi: 10.1016/0039-6028(94)00731-4
– ident: ref5/cit5
  doi: 10.1016/j.jcat.2011.12.025
– ident: ref21/cit21
  doi: 10.1039/C3CP54132K
– ident: ref30/cit30
  doi: 10.1039/c1cc12469b
– ident: ref41/cit41
  doi: 10.1016/j.jcat.2017.02.025
– ident: ref48/cit48
  doi: 10.1021/acscatal.5b01496
– ident: ref9/cit9
  doi: 10.1016/j.jcat.2014.08.010
– ident: ref51/cit51
  doi: 10.1016/j.cattod.2010.03.055
– ident: ref31/cit31
  doi: 10.1002/cctc.201300141
– ident: ref44/cit44
  doi: 10.1103/PhysRevB.58.3641
– ident: ref56/cit56
  doi: 10.1081/CR-120023908
– ident: ref64/cit64
  doi: 10.1021/acscatal.5b01496
– ident: ref24/cit24
  doi: 10.1021/cs500563s
– ident: ref46/cit46
  doi: 10.1063/1.2770708
– ident: ref62/cit62
  doi: 10.1002/anie.201104462
– ident: ref27/cit27
  doi: 10.1016/j.cattod.2015.12.002
– ident: ref7/cit7
  doi: 10.1039/c2cc31184d
– ident: ref6/cit6
  doi: 10.1007/s10562-012-0771-y
– ident: ref53/cit53
  doi: 10.1016/S1387-1811(03)00339-1
– ident: ref16/cit16
  doi: 10.1107/S2052252514020181
– ident: ref17/cit17
  doi: 10.1016/j.jcat.2014.01.004
– ident: ref39/cit39
  doi: 10.1016/j.jcat.2013.12.012
– ident: ref66/cit66
  doi: 10.1021/acscatal.5b01200
– ident: ref52/cit52
  doi: 10.1006/jcat.2002.3521
– ident: ref57/cit57
  doi: 10.1021/cr00007a010
– ident: ref67/cit67
  doi: 10.1146/annurev-physchem-032511-143722
– ident: ref40/cit40
  doi: 10.1016/j.apcatb.2014.02.037
– ident: ref28/cit28
  doi: 10.1021/jacs.6b02651
– ident: ref11/cit11
  doi: 10.1016/j.apcatb.2016.08.053
– ident: ref45/cit45
  doi: 10.1039/b001167n
– ident: ref61/cit61
  doi: 10.1016/j.apcatb.2013.09.010
– ident: ref32/cit32
  doi: 10.1039/C5CC02670A
– ident: ref36/cit36
  doi: 10.1016/j.cattod.2011.10.034
– ident: ref38/cit38
  doi: 10.1016/j.cattod.2013.10.047
– ident: ref69/cit69
  doi: 10.1016/S0079-6816(99)00012-X
– ident: ref1/cit1
  doi: 10.1081/CR-200031932
– ident: ref22/cit22
  doi: 10.1002/anie.201407030
– ident: ref55/cit55
  doi: 10.1021/la991011c
– ident: ref33/cit33
  doi: 10.1039/C5CC05980A
– ident: ref70/cit70
  doi: 10.1002/anie.200462473
– ident: ref2/cit2
  doi: 10.1039/C5CS00108K
– ident: ref26/cit26
  doi: 10.1021/acs.jpclett.5b00069
– ident: ref35/cit35
  doi: 10.1016/j.apcatb.2014.03.030
– ident: ref37/cit37
  doi: 10.1016/j.apcata.2012.03.026
– ident: ref29/cit29
  doi: 10.1021/jacs.7b01128
– ident: ref19/cit19
  doi: 10.1021/jp5065616
– ident: ref47/cit47
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref59/cit59
  doi: 10.1021/acscatal.6b03679
– ident: ref43/cit43
  doi: 10.1103/PhysRevB.54.1703
– volume-title: Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts
  year: 2014
  ident: ref3/cit3
  doi: 10.1007/978-1-4899-8071-7
– ident: ref20/cit20
  doi: 10.1016/j.jcat.2014.03.003
– ident: ref73/cit73
  doi: 10.1016/j.jcat.2013.10.017
– ident: ref60/cit60
  doi: 10.1006/jcat.1997.1739
– ident: ref4/cit4
  doi: 10.1007/s11244-013-0145-8
– ident: ref23/cit23
  doi: 10.1016/j.jcat.2014.01.017
– ident: ref72/cit72
  doi: 10.1016/j.apcatb.2014.10.020
– ident: ref58/cit58
  doi: 10.1039/f19898504091
– ident: ref18/cit18
  doi: 10.1021/jz500241m
– ident: ref49/cit49
  doi: 10.1063/1.1329672
– ident: ref8/cit8
  doi: 10.1016/j.jcat.2012.12.020
– ident: ref10/cit10
  doi: 10.1016/j.jcat.2015.08.004
– ident: ref63/cit63
  doi: 10.1021/jp4028468
– ident: ref13/cit13
  doi: 10.1039/c3dt50732g
SSID ssj0000456870
Score 2.632922
Snippet The hydrothermal stability of Cu/SSZ-13 SCR catalysts has been extensively studied, yet atomic-level understanding of changes to the zeolite support and the Cu...
The hydrothermal stability of Cu/SSZ-13 SCR catalysts has been extensively studied, yet atomic level understanding of changes to the zeolite support and the Cu...
SourceID osti
crossref
acs
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 8214
SubjectTerms Cu/SSZ-13
DRIFTS
Environmental Molecular Sciences Laboratory
EPR
hydrothermal aging
NMR
selective catalytic reduction
TEM
Title Toward Rational Design of Cu/SSZ-13 Selective Catalytic Reduction Catalysts: Implications from Atomic-Level Understanding of Hydrothermal Stability
URI http://dx.doi.org/10.1021/acscatal.7b03020
https://www.osti.gov/biblio/1419918
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxELaqcKCX8mhRecqH9tCDE3bXXtvcogUUqpYDIRLisrK99oU2QezmEP4Gf5gZZ0NTQIjrase27LHnG_ubGUK-yaoSRgXBjJeacZV7pkPQzCXKBjBROhMY4Pz7PB-M-M8rcfUvTc7zF_w06RlXx5uMrrSgkCm45ytpriQ6Wv1i-HSfgtBExdpwYMQEEwAD2lfJ1xpBW-Tq_2xRZwJ7asm2nK7NixTVMSUhUkpuutPGdt39y4SN7xj2OvnUQkzan-vEBvngx5tktVhUdvtMHi4jV5ZetBeB9DjSOOgk0GLaGw6vWZLRYSyQA2chLbCDGTRGLzDPK8q03-qmPqJnS5x0itEqtN9gqDP7hXwkOlqOnsEuBrPqLoZ9_YWeAetGdu7sCxmdnlwWA9YWZ2Amk1nDXO4TbbUDB1IYKTObuJwbLn1mTbB4kDglAV0Y53zCK82VT5UF2cND69F0bpHOeDL2Xwk1Bv06YXziNHcyaBdCzqtMGA54MPBt8h1ms2w3V13Gd_M0KRdTXLZTvE16i-UsXZvhHAtt_HlD4seTxO08u8cb_-6ihpSATDC9rkMekmvAdULymNp55xh3yccUgUEkxOyRTnM39fsAaxp7EPX5ETue9NU
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxELWq9NBeoNAiSmnxAQ49OKl37fW6t2hLlULaQz6kisvK9toXIEHdzSH8Df4wM-4mBISq9mqt7ZF37Hljv5kh5L2qKmnyIJnxSjORZ57pEDRzPLcBTJROJQY4X99kg6n4dCtvtwhfxcKAEDWMVMdH_D_ZBXgP2uKFRldZ0MsEvPRtwCIJ-lv9Yry-VkGEkscScWDLJJOABtrHyf8NgibJ1X-ZpM4cttaGibl8TkZr4SKz5Gt30diu-_lP3sYnSb9HnrWAk_bvNeQF2fKzl2SnWNV52ye_JpE5S0fttSC9iKQOOg-0WPTG4y-Mp3Qcy-XAyUgLnGAJg9ERZn3FPm1b3dTn9GqDoU4xdoX2Gwx8ZkNkJ9HpZiwNTjFYVncxCOw7zAzIN3J1lwdkevlxUgxYW6qBmVSlDXOZ59pqB-6kNEqllrtMGKF8ak2weKy4XAHWMM55Liotcp_kFvqenVmPhvQV6czmM_-aUGPQy5PGc6eFU0G7EDJRpdIIQIdBHJIPsJplu9XqMr6iJ7xcLXHZLvEh6a3-aunafOdYduPbAz1O1z1-3Of6eODbI1SUEnAKJtt1yEpyDThSSCXL3zxSxndkZzC5HpbDq5vPR2Q3QcgQqTJvSae5W_hjADyNPYkq_hvZgf02
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELZQKrVcaMtDBPrwgR44OGGz9nrdW7Q0CuUhREiFuKxsr32hTRC7OaR_o3-4M8aJUlSh9rpaP9Y79nzj-WaGkANZVULnXjDtpGI8zxxT3itmk9x4UFEqFRjgfH6RDcf86424WSNiEQsDk6ihpzo48XFX31c-ZhhIuvA8XGp0pAHZ7IGl_gK9dmhz9YvR8moFUUoeysSBPhNMACKIDsq_dYJqydZ_qKXWFLbXipoZvCbflhMM7JK7zqwxHfvzSe7G__6CN2QjAk_af5SUt2TNTTbJq2JR722L_LoODFp6Fa8H6XEgd9Cpp8WsOxrdsiSlo1A2B05IWuAAc-iMXmH2V2wTn9VN_ZmerDDVKcaw0H6DAdDsDFlKdLwaU4NDDOfVQwgG-wEjAwIOnN35NhkPvlwXQxZLNjCdyrRhNnOJMsqCWSm0lKlJbMY1ly412hs8XmwuAXNoa13CK8Vz18sNtD06Mg4V6g5pTaYTt0uo1mjtCe0Sq7iVXlnvM16lQnNAiZ63ySdYzTJuuboM3vReUi6WuIxL3CbdxZ8tbcx7juU3vj_T4nDZ4v4x58cz7-6jsJSAVzDprkV2km3AoEJKWb73j3P8SF5eHg_Ks5OL032y3kPkEBgz70ireZi594B7GvMhSPlv_4__uQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Rational+Design+of+Cu%2FSSZ-13+Selective+Catalytic+Reduction+Catalysts%3A+Implications+from+Atomic-Level+Understanding+of+Hydrothermal+Stability&rft.jtitle=ACS+catalysis&rft.au=Song%2C+James&rft.au=Wang%2C+Yilin&rft.au=Walter%2C+Eric+D.&rft.au=Washton%2C+Nancy+M.&rft.date=2017-12-01&rft.pub=American+Chemical+Society+%28ACS%29&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=7&rft.issue=12&rft_id=info:doi/10.1021%2Facscatal.7b03020&rft.externalDocID=1419918
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon