Magnetic Particle-Based Enzyme Assays and Immunoassays for Microcystins: From Colorimetric to Electrochemical Detection

In this work, magnetic particles (MPs) are used as supports for the immobilization of biorecognition molecules for the detection of microcystins (MCs). In one approach, a recombinant protein phosphatase 1 (PP1) has been conjugated to MPs via coordination chemistry, and MC-LR detection has been based...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 47; no. 1; pp. 471 - 478
Main Authors Reverté, Laia, Garibo, Diana, Flores, Cintia, Diogène, Jorge, Caixach, Josep, Campàs, Mònica
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 02.01.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, magnetic particles (MPs) are used as supports for the immobilization of biorecognition molecules for the detection of microcystins (MCs). In one approach, a recombinant protein phosphatase 1 (PP1) has been conjugated to MPs via coordination chemistry, and MC-LR detection has been based on the inhibition of the enzyme activity. In the other approach, a monoclonal antibody (mAb) against MC-LR has been conjugated to protein G-coated MPs, and a direct competitive enzyme-linked immunoparticle assay (ELIPA) has been then performed. Conjugation of biomolecules to MPs has been first checked, and after optimization, MC detection has been performed. The colorimetric PPIA with PP1-MP and the best ELIPA strategy have provided limits of detection (LOD) of 7.4 and 3.9 μg/L of MC-LR, respectively. The electrochemical ELIPA has decreased the LOD to 0.4 μg/L, value below the guideline recommended by the World Health Organisation (WHO). The approaches have been applied to the analysis of a cyanobacterial culture and a natural bloom, and MC equivalent contents have been compared to those obtained by conventional assays and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results have demonstrated the viability of the use of MPs as biomolecule immobilization supports in biotechnological tools for MCs monitoring.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0013-936X
1520-5851
DOI:10.1021/es304234n