Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics

Two-dimensional (2D) materials have generated great interest in the past few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2), and insulating boron nitride. These materials and t...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 14; no. 6; pp. 3055 - 3063
Main Authors Yu, Lili, Lee, Yi-Hsien, Ling, Xi, Santos, Elton J. G, Shin, Yong Cheol, Lin, Yuxuan, Dubey, Madan, Kaxiras, Efthimios, Kong, Jing, Wang, Han, Palacios, Tomás
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 11.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Two-dimensional (2D) materials have generated great interest in the past few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2), and insulating boron nitride. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency, and favorable transport properties for realizing electronic, sensing, and optical systems on arbitrary surfaces. In this paper, we demonstrate a novel technology for constructing large-scale electronic systems based on graphene/molybdenum disulfide (MoS2) heterostructures grown by chemical vapor deposition. We have fabricated high-performance devices and circuits based on this heterostructure, where MoS2 is used as the transistor channel and graphene as contact electrodes and circuit interconnects. We provide a systematic comparison of the graphene/MoS2 heterojunction contact to more traditional MoS2-metal junctions, as well as a theoretical investigation, using density functional theory, of the origin of the Schottky barrier height. The tunability of the graphene work function with electrostatic doping significantly improves the ohmic contact to MoS2. These high-performance large-scale devices and circuits based on this 2D heterostructure pave the way for practical flexible transparent electronics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1530-6984
1530-6992
DOI:10.1021/nl404795z