Multi-Elemental Analysis of ATHO-G Rhyolitic Glass (MPI-DING Reference Material) by Femtosecond and Nanosecond LA-ICP-MS: Evidence for Significant Heterogeneity of B, V, Zn, Mo, Sn, Sb, Cs, W, Pt and Pb at the Millimetre Scale

This paper reports on the application of variants of LA‐ICP‐MS – including infrared femtosecond laser ablation (fs‐LA) inductively coupled plasma‐quadrupole mass spectrometry (ICP‐QMS) and nanosecond laser ablation (ns‐LA) coupled with single‐collector sector‐field (SF‐) ICP‐MS – to the in situ dete...

Full description

Saved in:
Bibliographic Details
Published inGeostandards and geoanalytical research Vol. 34; no. 3; pp. 245 - 255
Main Authors Borisova, Anastassia Y., Freydier, Rémi, Polvé, Mireille, Jochum, Klaus Peter, Candaudap, Frederic
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.09.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper reports on the application of variants of LA‐ICP‐MS – including infrared femtosecond laser ablation (fs‐LA) inductively coupled plasma‐quadrupole mass spectrometry (ICP‐QMS) and nanosecond laser ablation (ns‐LA) coupled with single‐collector sector‐field (SF‐) ICP‐MS – to the in situ determination of trace elements in different splits of the reference material (RM) ATHO‐G (MPI‐DING). Analyses of the materials performed by fs‐ and ns‐LA‐ICP‐MS demonstrated the efficiency of the techniques with typical accuracy at a level of ≤ ± 20%. One ‘anomalous’ split, however, displayed a significant discrepancy from the reference concentrations for B, V, Zn, Mo, Sn, Sb, Cs, W and Pb. Three‐ to six‐fold enrichment of V, Mo, Cs and Pt relative to the reference contents in this split is likely to have been due to direct contact of the silicate melt with Pt crucible walls and ceramics. Boron, Zn, Sn, Sb, W and Pb depletion relative to the reference concentrations is probably due to siderophile element adsorption by the Pt walls and/or related to the formation of volatile‐depleted compositional cords during the preparation process. Our results imply that additional precautions should be taken against volatile/siderophile element heterogeneity in marginal/surface layers (≤ 10 mm) during the preparation of RMs by the fusion technique. Cet article rend compte de l’application de variantes de la technique LA‐ICP‐MS – y compris l’ablation laser infrarouge femtoseconde (fs‐LA) couplée à un spectromètre de masse quadrupolaire à source plasma à couplage inductif (ICP‐QMS) et l’ablation laser nanoseconde (ns‐LA) couplée avec un spectromètre de masse à secteur magnétique simple collecteur à source plasma à couplage inductif (SF‐) ICP‐MS – pour la détermination in situ des éléments traces dans différents fragments du matériau de référence ATHO‐G (MPI‐DING). Les analyses des matériaux effectués par fs et ns‐LA‐ICP‐MS ont démontré l’efficacité de ces techniques avec une précision typique ≤ ± 20%. Cependant un fragment anormal a montré un écart significatif par rapport aux concentrations de référence en B, V, Zn, Mo, Sn, Sb, Cs, Pb et W. L’enrichissement trois à six fois supérieurs en V, Mo, Cs et Pt de ce fragment par rapport au contenu de référence est susceptible d’être du à un contact direct du liquide silicaté avec les parois du creuset en platine et avec la céramique. L’appauvrissement en B, Zn, Sn, Sb, W et Pb par rapport aux concentrations de référence est probablement due à l’adsorption des éléments sidérophiles par les parois en platine et/ou reliés à la formation de « cordes » compositionnelles appauvris en volatils au cours du processus de préparation. Nos résultats impliquent que des précautions supplémentaires doivent être prises contre la possible formation d’hétérogénéités en éléments volatils et sidérophiles au niveau des couches marginales de surface (≤ 10 mm) lors de la préparation de matériaux de référence par la technique de fusion.
AbstractList This paper reports on the application of variants of LA‐ICP‐MS – including infrared femtosecond laser ablation (fs‐LA) inductively coupled plasma‐quadrupole mass spectrometry (ICP‐QMS) and nanosecond laser ablation (ns‐LA) coupled with single‐collector sector‐field (SF‐) ICP‐MS – to the in situ determination of trace elements in different splits of the reference material (RM) ATHO‐G (MPI‐DING). Analyses of the materials performed by fs‐ and ns‐LA‐ICP‐MS demonstrated the efficiency of the techniques with typical accuracy at a level of ≤ ± 20%. One ‘anomalous’ split, however, displayed a significant discrepancy from the reference concentrations for B, V, Zn, Mo, Sn, Sb, Cs, W and Pb. Three‐ to six‐fold enrichment of V, Mo, Cs and Pt relative to the reference contents in this split is likely to have been due to direct contact of the silicate melt with Pt crucible walls and ceramics. Boron, Zn, Sn, Sb, W and Pb depletion relative to the reference concentrations is probably due to siderophile element adsorption by the Pt walls and/or related to the formation of volatile‐depleted compositional cords during the preparation process. Our results imply that additional precautions should be taken against volatile/siderophile element heterogeneity in marginal/surface layers (≤ 10 mm) during the preparation of RMs by the fusion technique. Cet article rend compte de l’application de variantes de la technique LA‐ICP‐MS – y compris l’ablation laser infrarouge femtoseconde (fs‐LA) couplée à un spectromètre de masse quadrupolaire à source plasma à couplage inductif (ICP‐QMS) et l’ablation laser nanoseconde (ns‐LA) couplée avec un spectromètre de masse à secteur magnétique simple collecteur à source plasma à couplage inductif (SF‐) ICP‐MS – pour la détermination in situ des éléments traces dans différents fragments du matériau de référence ATHO‐G (MPI‐DING). Les analyses des matériaux effectués par fs et ns‐LA‐ICP‐MS ont démontré l’efficacité de ces techniques avec une précision typique ≤ ± 20%. Cependant un fragment anormal a montré un écart significatif par rapport aux concentrations de référence en B, V, Zn, Mo, Sn, Sb, Cs, Pb et W. L’enrichissement trois à six fois supérieurs en V, Mo, Cs et Pt de ce fragment par rapport au contenu de référence est susceptible d’être du à un contact direct du liquide silicaté avec les parois du creuset en platine et avec la céramique. L’appauvrissement en B, Zn, Sn, Sb, W et Pb par rapport aux concentrations de référence est probablement due à l’adsorption des éléments sidérophiles par les parois en platine et/ou reliés à la formation de « cordes » compositionnelles appauvris en volatils au cours du processus de préparation. Nos résultats impliquent que des précautions supplémentaires doivent être prises contre la possible formation d’hétérogénéités en éléments volatils et sidérophiles au niveau des couches marginales de surface (≤ 10 mm) lors de la préparation de matériaux de référence par la technique de fusion.
This paper reports on the application of variants of LA‐ICP‐MS – including infrared femtosecond laser ablation (fs‐LA) inductively coupled plasma‐quadrupole mass spectrometry (ICP‐QMS) and nanosecond laser ablation (ns‐LA) coupled with single‐collector sector‐field (SF‐) ICP‐MS – to the in situ determination of trace elements in different splits of the reference material (RM) ATHO‐G (MPI‐DING). Analyses of the materials performed by fs‐ and ns‐LA‐ICP‐MS demonstrated the efficiency of the techniques with typical accuracy at a level of ≤ ± 20%. One ‘anomalous’ split, however, displayed a significant discrepancy from the reference concentrations for B, V, Zn, Mo, Sn, Sb, Cs, W and Pb. Three‐ to six‐fold enrichment of V, Mo, Cs and Pt relative to the reference contents in this split is likely to have been due to direct contact of the silicate melt with Pt crucible walls and ceramics. Boron, Zn, Sn, Sb, W and Pb depletion relative to the reference concentrations is probably due to siderophile element adsorption by the Pt walls and/or related to the formation of volatile‐depleted compositional cords during the preparation process. Our results imply that additional precautions should be taken against volatile/siderophile element heterogeneity in marginal/surface layers (≤ 10 mm) during the preparation of RMs by the fusion technique. Cet article rend compte de l’application de variantes de la technique LA‐ICP‐MS – y compris l’ablation laser infrarouge femtoseconde (fs‐LA) couplée à un spectromètre de masse quadrupolaire à source plasma à couplage inductif (ICP‐QMS) et l’ablation laser nanoseconde (ns‐LA) couplée avec un spectromètre de masse à secteur magnétique simple collecteur à source plasma à couplage inductif (SF‐) ICP‐MS – pour la détermination in situ des éléments traces dans différents fragments du matériau de référence ATHO‐G (MPI‐DING). Les analyses des matériaux effectués par fs et ns‐LA‐ICP‐MS ont démontré l’efficacité de ces techniques avec une précision typique ≤ ± 20%. Cependant un fragment anormal a montré un écart significatif par rapport aux concentrations de référence en B, V, Zn, Mo, Sn, Sb, Cs, Pb et W. L’enrichissement trois à six fois supérieurs en V, Mo, Cs et Pt de ce fragment par rapport au contenu de référence est susceptible d’être du à un contact direct du liquide silicaté avec les parois du creuset en platine et avec la céramique. L’appauvrissement en B, Zn, Sn, Sb, W et Pb par rapport aux concentrations de référence est probablement due à l’adsorption des éléments sidérophiles par les parois en platine et/ou reliés à la formation de « cordes » compositionnelles appauvris en volatils au cours du processus de préparation. Nos résultats impliquent que des précautions supplémentaires doivent être prises contre la possible formation d’hétérogénéités en éléments volatils et sidérophiles au niveau des couches marginales de surface (≤ 10 mm) lors de la préparation de matériaux de référence par la technique de fusion.
Author Jochum, Klaus Peter
Candaudap, Frederic
Borisova, Anastassia Y.
Freydier, Rémi
Polvé, Mireille
Author_xml – sequence: 1
  givenname: Anastassia Y.
  surname: Borisova
  fullname: Borisova, Anastassia Y.
  email: borisova@lmtg.obs-mip.fr
  organization:  Laboratoire des Mécanismes et Transferts en Géologie, Université de Toulouse III - CNRS-IRD-OMP, 14 Avenue E. Belin, 31400 Toulouse, France
– sequence: 2
  givenname: Rémi
  surname: Freydier
  fullname: Freydier, Rémi
  organization:  Laboratoire HydroSciences Montpellier, Université Montpellier 2, Case MSE, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France
– sequence: 3
  givenname: Mireille
  surname: Polvé
  fullname: Polvé, Mireille
  organization:  Laboratoire des Mécanismes et Transferts en Géologie, Université de Toulouse III - CNRS-IRD-OMP, 14 Avenue E. Belin, 31400 Toulouse, France
– sequence: 4
  givenname: Klaus Peter
  surname: Jochum
  fullname: Jochum, Klaus Peter
  organization:  Max-Planck-Institut für Chemie, Johann-Joachim-Becher-Weg 27, Mainz 55128, Germany
– sequence: 5
  givenname: Frederic
  surname: Candaudap
  fullname: Candaudap, Frederic
  organization:  Laboratoire des Mécanismes et Transferts en Géologie, Université de Toulouse III - CNRS-IRD-OMP, 14 Avenue E. Belin, 31400 Toulouse, France
BookMark eNqNkV9v0zAQwCM0JLbBd7hHkOLiOP_hqStdWqntyjLWiRfLcS6bi-ug2EDzdfkkpC3smZOss-_0O5_0u_DOTGvQ8yCgo2CI99tRkMYByWn2MGJ0qFJK03S0f-GdPzfOhnsS5iSKsuyVd2HtltI4yuPg3Pu9_KGdIlONOzROaBgboXurLLQNjO9mN6SA26e-1copCYUW1sLb5XpOPs1XQwcb7NBIhKVw2Cmh30HVwzXuXGtRtqYGMZyVMP-eizGZT9ZkWX6A6U9VH9mm7aBUj0Y1SgrjYIbDrPYRDSrXH_a48uHeh6_Gh2XrQznksvJhYn3Y-LB2xz_WFQgH7mlYRWmtdug6hFIKja-9l43QFt_8zZfel-vp3WRGFjfFfDJeEBGmLCVNkiSZEDHLMJXImKQxSsmakGFTJ7SOQ8YiFiQyEnXQCKziPJcszoOqqmVVYXjpZae5smut7bDh3zu1E13PA8oPrviWH5TwgxJ-cMWPrvh-QD-e0F9KY__fHC-K2zQdaHKilXW4f6ZF940naZjGfLMq-Dq4f9hcJQX_HP4BGfKqvQ
CitedBy_id crossref_primary_10_1016_j_jafrearsci_2015_06_013
crossref_primary_10_1016_j_oregeorev_2015_11_006
crossref_primary_10_1111_j_1751_908X_2012_00152_x
crossref_primary_10_3389_feart_2023_1307303
crossref_primary_10_1144_SP516_2020_29
crossref_primary_10_1111_maps_14177
crossref_primary_10_1186_s40623_022_01726_y
crossref_primary_10_1016_j_quascirev_2017_08_003
crossref_primary_10_1016_j_aca_2016_08_029
crossref_primary_10_1016_j_chemgeo_2012_05_009
crossref_primary_10_1134_S1075701513020025
crossref_primary_10_1021_ac4017117
crossref_primary_10_1039_c2ja30075c
crossref_primary_10_1111_j_1751_908X_2012_00253_x
crossref_primary_10_1180_minmag_2012_076_1_91
crossref_primary_10_1016_j_chemgeo_2014_06_001
crossref_primary_10_1016_j_lithos_2022_106926
crossref_primary_10_2138_am_2020_7221
crossref_primary_10_1016_j_polar_2020_100505
crossref_primary_10_1111_j_1751_908X_2012_00189_x
crossref_primary_10_1029_2012JB009213
crossref_primary_10_31857_S0016752523080034
crossref_primary_10_1016_j_quaint_2011_07_012
crossref_primary_10_1144_SP398_1
crossref_primary_10_4236_ajac_2014_511079
crossref_primary_10_4236_ajac_2018_93013
crossref_primary_10_1016_j_marpetgeo_2016_10_013
crossref_primary_10_1134_S0016702923080037
crossref_primary_10_1016_j_jafrearsci_2016_05_005
Cites_doi 10.1007/s006040070020
10.1111/j.1751-908X.2008.00882.x
10.1039/b709415a
10.1111/j.1751-908X.2009.00855.x
10.2138/am-1999-1005
10.1016/j.gca.2006.02.015
10.1039/b609547j
10.1016/0016-7037(95)00064-7
10.1016/S0016-7037(99)00136-2
10.1111/j.1751-908X.2008.00916.x
10.1029/2005GC001060
10.1111/j.1751-908X.2000.tb00590.x
10.1039/b505734e
10.1016/j.gca.2006.04.030
10.1039/b212196d
10.1039/ja9961100899
10.1111/j.1751-908X.1997.tb00538.x
10.2138/am.2010.3424
10.1111/j.1751-908X.2002.tb00634.x
10.1016/j.epsl.2008.03.005
ContentType Journal Article
Copyright 2010 The Authors. Geostandards and Geoanalytical Research © 2010 International Association of Geoanalysts
Copyright_xml – notice: 2010 The Authors. Geostandards and Geoanalytical Research © 2010 International Association of Geoanalysts
DBID BSCLL
AAYXX
CITATION
DOI 10.1111/j.1751-908X.2010.00077.x
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1751-908X
EndPage 255
ExternalDocumentID 10_1111_j_1751_908X_2010_00077_x
GGR77
ark_67375_WNG_P1VXWB6G_Q
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
29H
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABHUG
ABPTK
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZ~
I-F
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MM-
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RJQFR
ROL
RX1
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
ZY4
ZZTAW
~02
~IA
~WT
AITYG
HGLYW
OIG
AAYXX
CITATION
ID FETCH-LOGICAL-a3727-f6668aa528e7ce22c05ecc2f32efd60d53224216c4ad1faeb599c2591bbdcbbe3
IEDL.DBID DR2
ISSN 1639-4488
IngestDate Fri Aug 23 00:54:58 EDT 2024
Sat Aug 24 00:59:07 EDT 2024
Wed Jan 17 05:00:57 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3727-f6668aa528e7ce22c05ecc2f32efd60d53224216c4ad1faeb599c2591bbdcbbe3
Notes ark:/67375/WNG-P1VXWB6G-Q
ArticleID:GGR77
istex:B70003D04F99B53FD7BDF25D5ECF02BDDAEF8F11
PageCount 11
ParticipantIDs crossref_primary_10_1111_j_1751_908X_2010_00077_x
wiley_primary_10_1111_j_1751_908X_2010_00077_x_GGR77
istex_primary_ark_67375_WNG_P1VXWB6G_Q
PublicationCentury 2000
PublicationDate 2010-09
September 2010
2010-09-00
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
PublicationTitle Geostandards and geoanalytical research
PublicationYear 2010
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Becker J.K., Pickhardt C. and Dietze H.J. (2000) Laser ablation inductively coupled plasma-mass spectrometry for determination of trace elements in geological glasses. Microchimica Acta, 135, 71-80.
Jochum K.P., Stoll B., Herwig K. and Willbold M. (2007) Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm Nd:YAG laser and matrix-matched calibration. Journal of Analytical Atomic Spectrometry, 22, 112-121.
Borisova A.Y., Pichavant M., Polvé M., Wiedenbeck M., Freydier R. and Candaudap F. (2006) Trace element geochemistry of the 1991 Mt. Pinatubo silicic melts, Philippines: Implications for ore-forming potential of adakitic magmatism. Geochimica et Cosmochimica Acta, 70, 3702-3716.
Kempenaers L., Janssens K., Jochum K.P., Vincze L., Vekemans B., Somogyi A., Drakopoulos M. and Adams F. (2003) Micro-heterogeneity study of trace elements in USGS, MPI-DING and NIST glass reference materials by mean of synchrotron micro-XRF. Journal of Analytical Atomic Spectrometry, 18, 350-357.
Borisova A.Y., Freydier R., Polvé M., Salvi S., Candaudap F. and Aigouy T. (2008) In situ multi-elemental analysis of the Mount Pinatubo quartz-hosted melt inclusions by NIR femtosecond laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 32, 209-229.
Freydier R., Candaudap F., Poitrasson F., Arbouet A., Chatel B. and Dupré B. (2008) Evaluation of infrared femtosecond laser ablation for the analysis of geomaterials by ICP-MS. Journal of Analytical Atomic Spectrometry, 23, 702-710.
Jochum K.P. and Brueckner S.M. (2008) Reference materials in geoanalytical and environmental research - review for 2006 and 2007. Geostandards and Geoanalytical Research, 32, 405-452.
Ertel W., O'Neill H.S.T.C., Sylvester P.J. and Dingwell D.B. (1999) Solubilities of Pt and Rh in a haplobasaltic silicate melt at 1300 °C. Geochimica et Cosmochimica Acta, 63, 2439-2449.
Jochum K.P., Dingwell D.B., Rocholl A., Stoll B., Hofmann A.W., Becker S., Besmehn A., Bessette D., Dietze H.-J., Dulski P., Erzinger J., Hellebrand E., Hoppe P., Horn I., Janssens K., Jenner G.A., Klein M., McDonough W.F., Maetz M., Mezger K., Münker C., Nikogosian I.K., Pickhardt C., Raczek I., Rhede D., Seufert H.M., Simakin S.G., Sobolev A.V., Spettel B., Straub S., Vincze L., Wallianos A., Weckwerth G., Weyer S., Wolf D. and Zimmer M. (2000) The preparation and preliminary characterisation of eight geological MPI-DING reference glasses for in-situ microanalysis. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis, 24, 87-133.
Eggins S.M. and Shelley J.M.G. (2002) Compositional heterogeneity in NIST SRM 610-617 glasses. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis, 26, 269-286.
Borisova A.Y., Pokrovski G.S., Pichavant M., Freydier R. and Candaudap F. (2010) Arsenic enrichment in hydrous peraluminous melts: Insights from femtosecond laser ablation-inductively coupled plasma-quadrupole mass spectrometry and in situ X-ray absorption fine structure spectroscopy. American Mineralogist, 95, 1095-1104.
Kent A.J.R. and Ungerer C.A.A. (2005) Production of barium and light earth element oxides during LA-ICP-MS microanalysis. Journal of Analytical Atomic Spectrometry, 20, 1256-1262.
MacKenzie J.M. and Canil D. (2008) Volatile heavy mobility in silicate liquids: Implications for volcanic degassing and eruption prediction. Earth and Planetary Science Letters, 269, 488-496.
Ertel W., Walter M.J., Drake M.J. and Sylvester P.J. (2006) Experimental study of platinum solubility in silicate melt to 14 GPa and 2273 K: Implications for accretion and core formation in Earth. Geochimica et Cosmochimica Acta, 70, 2591-2602.
Logan M.A.V. and Wise M.A. (2009) Characterisation of two new reference materials: STL-1, the Stewart lepidolite and ZA-1, the Zapot amazonite. Geostandards and Geoanalytical Research, 33, 85-93.
Longerich H.P., Jackson S.E. and Günther D. (1996) Laser ablation-inductively coupled plasma-mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry, 11, 899-904.
Pearce N.J.G., Perkins W.T., Westgate J.A., Gorton M.P., Jackson S.E., Neal C.R. and Chenery S.P. (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis, 21, 115-144.
Linnen R.L., Pichavant M., Holtz F. and Burgess S. (1995) The effect of fO2 on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850 °C and 2 kbar. Geochimica et Cosmochimica Acta, 59, 1579-1588.
Jochum K.P., Stoll B., Herwig K., Willbold M., Hofmann A.W., Amini M., Aarburg S., Abouchami W., Hellebrand E., Mocek B., Raczek I., Stracke A., Alard O., Bouman C., Becker S., Dücking M., Brätz H., Klemd R., De Bruin D., Canil D., Cornell D., De Hoog C.-J., Dalpé C., Danyushevsky L., Eisenhauer A., Gao Y., Snow J.E., Groschopf N., Günther D., Latkoczy C., Guillong M., Hauri E.H., Höfer H.E., Lahaye Y., Horz K., Jacob D.E., Kasemann S.A., Kent A.J.R., Ludwig T., Zack T., Mason P.R.D., Meixner A., Rosner M., Misawa K., Nash B.P., Pfänder J., Premo W.R., Sun W.D., Tiepolo M., Vannucci R., Vennemann T., Wayne D. and Woodhead J.D. (2006) MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios. Geochemistry, Geophysics, Geosystems, 7/2, doi: 10.1029/2005GC001060.
Ratajeski K. and Sisson T.W. (1999) Loss of iron to gold capsules in rock-melting experiments. American Mineralogist, 84, 1521-1527.
2006; 70
2009; 33
1987; 1
2002; 26
2006; 7/2
2000; 135
1997; 21
1995; 59
2000; 24
2009
2008; 23
2005; 20
2008; 32
1999; 63
2003; 18
2008; 269
1999; 84
2007; 22
2010; 95
1996; 11
e_1_2_6_21_1
e_1_2_6_10_1
e_1_2_6_20_1
Pichavant M. (e_1_2_6_22_1) 1987
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_19_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_3_1
e_1_2_6_11_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
References_xml – volume: 135
  start-page: 71
  year: 2000
  end-page: 80
  article-title: Laser ablation inductively coupled plasma‐mass spectrometry for determination of trace elements in geological glasses
  publication-title: Microchimica Acta
– volume: 24
  start-page: 87
  year: 2000
  end-page: 133
  article-title: The preparation and preliminary characterisation of eight geological MPI‐DING reference glasses for microanalysis
  publication-title: Geostandards Newsletter: The Journal of Geostandards and Geoanalysis
– volume: 18
  start-page: 350
  year: 2003
  end-page: 357
  article-title: Micro‐heterogeneity study of trace elements in USGS, MPI‐DING and NIST glass reference materials by mean of synchrotron micro‐XRF
  publication-title: Journal of Analytical Atomic Spectrometry
– year: 2009
– volume: 23
  start-page: 702
  year: 2008
  end-page: 710
  article-title: Evaluation of infrared femtosecond laser ablation for the analysis of geomaterials by ICP‐MS
  publication-title: Journal of Analytical Atomic Spectrometry
– volume: 20
  start-page: 1256
  year: 2005
  end-page: 1262
  article-title: Production of barium and light earth element oxides during LA‐ICP‐MS microanalysis
  publication-title: Journal of Analytical Atomic Spectrometry
– volume: 26
  start-page: 269
  year: 2002
  end-page: 286
  article-title: Compositional heterogeneity in NIST SRM 610‐617 glasses
  publication-title: Geostandards Newsletter: The Journal of Geostandards and Geoanalysis
– volume: 32
  start-page: 209
  year: 2008
  end-page: 229
  article-title: multi‐elemental analysis of the Mount Pinatubo quartz‐hosted melt inclusions by NIR femtosecond laser ablation‐inductively coupled plasma‐mass spectrometry
  publication-title: Geostandards and Geoanalytical Research
– volume: 1
  start-page: 359
  year: 1987
  end-page: 373
– volume: 269
  start-page: 488
  year: 2008
  end-page: 496
  article-title: Volatile heavy mobility in silicate liquids: Implications for volcanic degassing and eruption prediction
  publication-title: Earth and Planetary Science Letters
– volume: 84
  start-page: 1521
  year: 1999
  end-page: 1527
  article-title: Loss of iron to gold capsules in rock‐melting experiments
  publication-title: American Mineralogist
– volume: 63
  start-page: 2439
  year: 1999
  end-page: 2449
  article-title: Solubilities of Pt and Rh in a haplobasaltic silicate melt at 1300 °C
  publication-title: Geochimica et Cosmochimica Acta
– volume: 22
  start-page: 112
  year: 2007
  end-page: 121
  article-title: Validation of LA‐ICP‐MS trace element analysis of geological glasses using a new solid‐state 193 nm Nd:YAG laser and matrix‐matched calibration
  publication-title: Journal of Analytical Atomic Spectrometry
– volume: 11
  start-page: 899
  year: 1996
  end-page: 904
  article-title: Laser ablation‐inductively coupled plasma‐mass spectrometric transient signal data acquisition and analyte concentration calculation
  publication-title: Journal of Analytical Atomic Spectrometry
– volume: 32
  start-page: 405
  year: 2008
  end-page: 452
  article-title: Reference materials in geoanalytical and environmental research – review for 2006 and 2007
  publication-title: Geostandards and Geoanalytical Research
– volume: 70
  start-page: 3702
  year: 2006
  end-page: 3716
  article-title: Trace element geochemistry of the 1991 Mt. Pinatubo silicic melts, Philippines: Implications for ore‐forming potential of adakitic magmatism
  publication-title: Geochimica et Cosmochimica Acta
– volume: 21
  start-page: 115
  year: 1997
  end-page: 144
  article-title: A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials
  publication-title: Geostandards Newsletter: The Journal of Geostandards and Geoanalysis
– volume: 7/2
  year: 2006
  article-title: MPI‐DING reference glasses for microanalysis: New reference values for element concentrations and isotope ratios
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 33
  start-page: 85
  year: 2009
  end-page: 93
  article-title: Characterisation of two new reference materials: STL‐1, the Stewart lepidolite and ZA‐1, the Zapot amazonite
  publication-title: Geostandards and Geoanalytical Research
– volume: 95
  start-page: 1095
  year: 2010
  end-page: 1104
  article-title: Arsenic enrichment in hydrous peraluminous melts: Insights from femtosecond laser ablation‐inductively coupled plasma‐quadrupole mass spectrometry and X‐ray absorption fine structure spectroscopy
  publication-title: American Mineralogist
– volume: 59
  start-page: 1579
  year: 1995
  end-page: 1588
  article-title: The effect of f on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850 °C and 2 kbar
  publication-title: Geochimica et Cosmochimica Acta
– volume: 70
  start-page: 2591
  year: 2006
  end-page: 2602
  article-title: Experimental study of platinum solubility in silicate melt to 14 GPa and 2273 K: Implications for accretion and core formation in Earth
  publication-title: Geochimica et Cosmochimica Acta
– ident: e_1_2_6_2_1
  doi: 10.1007/s006040070020
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1751-908X.2008.00882.x
– ident: e_1_2_6_10_1
  doi: 10.1039/b709415a
– ident: e_1_2_6_18_1
  doi: 10.1111/j.1751-908X.2009.00855.x
– ident: e_1_2_6_23_1
  doi: 10.2138/am-1999-1005
– ident: e_1_2_6_9_1
  doi: 10.1016/j.gca.2006.02.015
– ident: e_1_2_6_14_1
  doi: 10.1039/b609547j
– ident: e_1_2_6_17_1
  doi: 10.1016/0016-7037(95)00064-7
– ident: e_1_2_6_8_1
  doi: 10.1016/S0016-7037(99)00136-2
– ident: e_1_2_6_11_1
  doi: 10.1111/j.1751-908X.2008.00916.x
– ident: e_1_2_6_13_1
  doi: 10.1029/2005GC001060
– ident: e_1_2_6_12_1
  doi: 10.1111/j.1751-908X.2000.tb00590.x
– ident: e_1_2_6_16_1
  doi: 10.1039/b505734e
– ident: e_1_2_6_6_1
– ident: e_1_2_6_3_1
  doi: 10.1016/j.gca.2006.04.030
– start-page: 359
  volume-title: Magmatic processes: Physicochemical principles
  year: 1987
  ident: e_1_2_6_22_1
  contributor:
    fullname: Pichavant M.
– ident: e_1_2_6_15_1
  doi: 10.1039/b212196d
– ident: e_1_2_6_19_1
  doi: 10.1039/ja9961100899
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1751-908X.1997.tb00538.x
– ident: e_1_2_6_5_1
  doi: 10.2138/am.2010.3424
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1751-908X.2002.tb00634.x
– ident: e_1_2_6_20_1
  doi: 10.1016/j.epsl.2008.03.005
SSID ssj0054951
Score 2.1087778
Snippet This paper reports on the application of variants of LA‐ICP‐MS – including infrared femtosecond laser ablation (fs‐LA) inductively coupled plasma‐quadrupole...
SourceID crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 245
SubjectTerms ATHO-G rhyolite glass
certified reference material
heterogeneity
hétérogénéité
LA-ICP-MS
laser femtoseconde proche infrarouge
matériau de référence certifié
MPI-DING series
Near-infrared femtosecond laser
série MPI-DING
verre rhyolitique ATHO-G
Title Multi-Elemental Analysis of ATHO-G Rhyolitic Glass (MPI-DING Reference Material) by Femtosecond and Nanosecond LA-ICP-MS: Evidence for Significant Heterogeneity of B, V, Zn, Mo, Sn, Sb, Cs, W, Pt and Pb at the Millimetre Scale
URI https://api.istex.fr/ark:/67375/WNG-P1VXWB6G-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1751-908X.2010.00077.x
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLXQEBIvfCPKAN0HhEBKqiR14oS3rqxpES2h2dZqL5GdODBVS6Y2k1ae-An8Rp75EVw7SUUnHhDioa0q22la32ufUx2fS8hLwSR1A01LXG5S7GUG3FG-t9KiKa6GNNVun1NvdEzfL9xFo39SZ2Fqf4jtH24qM_R6rRKci_VukjNVIt7yF61Cy2Ksq_Ck8tVT-Gi2dZJCFqQrMSL6CExkJP41Uc-fLrSzU91UP_rVLoLVW9DwLlm2N18rT5bdy0p006_XfB3_z7e7R-40SBX6dWjdJzdk8YDcCnUl4M1D8lMf3f3x7fthI0DHro3BCZQ59I9GH7ExhNmXTS2xg1ABdXg9icbY8G48xbbW5RYmvNKp8AbEBobyvCrXiqlnwPGBO0D79kMfx44HET5P4rfQ1kQFhN4Qn30ulPAJYwVGSuVTYnJIZBnqfg4MODHgtDBgUhoQ42ssDBisDZgbEFX6cyIBvAJExKBOSJ6dy2olIcYglo_I8fDwaDAym9IRJu8hIjNzZGU-567jS5ZKx0ktF2PVyXuOzDPPylxcx6hjeynlmZ1zKdwgSJEJ2kJkqRCy95jsFWUhnxDgjKbIqSwrDzzs3fM9RqXwHZsLl3u-6BC7DZPkonYISX5jVjiLiZrFRM1iomcxueqQVzqetgP4aqkUdsxN5tMwieyTxfzAC5NPHUJ1lPz1lZMwnDH29N-G7ZPbtThCSeiekb1qdSmfI-aqxAudTb8AObghOQ
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LjtMwFLXQjBBseCPK8y4QAimpkjRPdp3ONCk0JbSdacXGshMHRsMkqJORpqz4BL6RNR_BtZNUdMQCIRZJFNnOy_fa50TH9xLynHvCdgJFSxym21hLD5gl494Kw05xNLRTFe1z4kaH9puls2zSAcm1MHV8iM0PN-kZaryWDi5_SG97uSdzxBv-spVoGZ7XRUC5i97vSC_dn25iSSEPUrkYEX8EOnIS_5Ks509X2pqrduVnv9jGsGoSGt4kn9vHr7UnJ93zinfTr5ciO_6n97tFbjRgFfq1dd0mV0Rxh1wNVTLg9V3yU63e_fHt-0GjQceqTYwTKHPoz6N3WBjC9NO6VtlBKLE6vIyTERbsjyZY1ga6hZhVyhteAV_DUJxW5Zkk6xkw3HASaE_HfWw7GiS4j2evoU2LCoi-YXb8sZDaJzQXiKTQp0T_EEg05PPsaXCkwYdCg7jUYIbHGddgcKbBQoOkUvdJOLAKEBSDXCR5fCqqlYAZ2rG4Rw6HB_NBpDfZI3TWQ1Cm50jMfMYcyxdeKiwrNRw0VyvvWSLPXCNzcCizLdNNbZaZORPcCYIUyaDJeZZyLnr3yU5RFuIBAebZKdIqw8gDF2v3fNezBfctk3GHuT7vELO1E_qlDhJCfyNX2ItU9iKVvUhVL9KLDnmhDGrTgK1OpMjOc-hiEtLEPFou9tyQvu8QW5nJX1-ZhuHU8x7-W7Nn5Fo0j8d0PJq8fUSu11oJqah7THaq1bl4ghCs4k-Va_0CU0clWQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQJhAv3BHleh4QAimpcnFuvHXtmhbWEpptrXix7MSBqVozdZm08sRP4DfyzI_g2GkqOvGAEA9JFNnOzefY3xd9PoeQlyKQ1Is0LfG4SbGWGXFHxb2VFs1wNKSZjvY59gdH9N3Mm631T2otTB0fYvPDTXmGHq-Vg5_lxbaTBypFvBXOGoWWFQRtxJO71HcdRcR6k00oKaRBOhUjwo_IREoSXlH1_OlKW1PVrvrql9sQVs9B_dtk3jx9LT2Zty8q0c6-Xgns-H9e7w65tYaq0Klt6y65Jhf3yPVYpwJe3Sc_9drdH9--768V6Fh1HeEEygI6h4MPWBjD5Muq1thBrJA6vB4lQyzoDcdY1oS5hRGvtC-8AbGCvjytynNF1XPguOEU0JwedLDtsJvgfpS-hSYpKiD2hvTk80Ipn9BYYKBkPiV6h0SaoZ5nz4BjAz4tDBiVBqR4TIUB3XMDpgYklb5PIoBXgJAY1BLJk1NZLSWkaMXyATnq7x92B-Y6d4TJXYRkZoG0LOTcc0IZZNJxMstDY3UK15FF7lu5hwMZdWw_ozy3Cy6FF0UZUkFbiDwTQroPyc6iXMhHBHhAMyRVllVEPtZ2Qz-gUoSOzYXH_VC0iN2YCTurQ4Sw36gV9iJTvchULzLdi-yyRV5pe9o04Mu5ktgFHpuOY5bYx7Ppnh-zjy1CtZX89ZVZHE-C4PG_NXtBbiS9PjsYjt8_ITdroYSS0z0lO9XyQj5D_FWJ59qxfgG9uSQI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi%E2%80%90Elemental+Analysis+of+ATHO%E2%80%90G+Rhyolitic+Glass+%28MPI%E2%80%90DING+Reference+Material%29+by+Femtosecond+and+Nanosecond+LA%E2%80%90ICP%E2%80%90MS%3A+Evidence+for+Significant+Heterogeneity+of+B%2C+V%2C+Zn%2C+Mo%2C+Sn%2C+Sb%2C+Cs%2C+W%2C+Pt+and+Pb+at+the+Millimetre+Scale&rft.jtitle=Geostandards+and+geoanalytical+research&rft.au=Borisova%2C+Anastassia+Y.&rft.au=Freydier%2C+R%C3%A9mi&rft.au=Polv%C3%A9%2C+Mireille&rft.au=Jochum%2C+Klaus+Peter&rft.date=2010-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1639-4488&rft.eissn=1751-908X&rft.volume=34&rft.issue=3&rft.spage=245&rft.epage=255&rft_id=info:doi/10.1111%2Fj.1751-908X.2010.00077.x&rft.externalDBID=10.1111%252Fj.1751-908X.2010.00077.x&rft.externalDocID=GGR77
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1639-4488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1639-4488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1639-4488&client=summon