Scanning Electron Microanalysis and Analytical Challenges of Mapping Elements in Urban Atmospheric Particles

Elemental mapping with energy-dispersive X-ray spectroscopy (EDX) associated with scanning electron microscopy is highly useful for studying internally mixed atmospheric particles. Presented is a study of individual particles from urban airsheds and the analytical challenges in qualitatively determi...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 45; no. 17; pp. 7380 - 7386
Main Authors Conny, Joseph M, Norris, Gary A
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.09.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Elemental mapping with energy-dispersive X-ray spectroscopy (EDX) associated with scanning electron microscopy is highly useful for studying internally mixed atmospheric particles. Presented is a study of individual particles from urban airsheds and the analytical challenges in qualitatively determining the composition and origin of heterogeneous urban-air particles from high-resolution elemental maps. Coarse-mode particles were taken from samples collected in three U.S. cities: Atlanta, Los Angeles, and Seattle. Elemental maps distinguished particles with heterogeneously mixed phases from those with homogeneously mixed phases that also contained inclusions or surface adducts. Elemental mapping at low and high beam energies, along with imaging at an oblique angle helped to classify particles by origin. The impact of particle shape on X-ray microanalysis was demonstrated by having the beam enter the particle at ≥52° from normal. Potential misinterpretations of particle composition due to artifacts in the elemental maps were minimized by tilt imaging to reveal particle surface roughness and depth, mapping at low beam energies, noting the position of the EDX detector in the map field, and assessing differences in the mass absorption coefficients of the particle’s major elements to anticipate X-ray self-absorption.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0013-936X
1520-5851
DOI:10.1021/es2009049