Breakdown of Corner States and Carrier Localization by Monolayer Fluctuations in Radial Nanowire Quantum Wells

We report a comprehensive study of the impact of the structural properties in radial GaAs-Al0.3Ga0.7As nanowire-quantum well heterostructures on the optical recombination dynamics and electrical transport properties, emphasizing particularly the role of the commonly observed variations of the quantu...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 19; no. 5; pp. 3336 - 3343
Main Authors Sonner, Maximilian M, Sitek, Anna, Janker, Lisa, Rudolph, Daniel, Ruhstorfer, Daniel, Döblinger, Markus, Manolescu, Andrei, Abstreiter, Gerhard, Finley, Jonathan J, Wixforth, Achim, Koblmüller, Gregor, Krenner, Hubert J
Format Journal Article
LanguageEnglish
Published American Chemical Society 08.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We report a comprehensive study of the impact of the structural properties in radial GaAs-Al0.3Ga0.7As nanowire-quantum well heterostructures on the optical recombination dynamics and electrical transport properties, emphasizing particularly the role of the commonly observed variations of the quantum well thickness at different facets. Typical thickness fluctuations of the radial quantum well observed by transmission electron microscopy lead to pronounced localization. Our optical data exhibit clear spectral shifts and a multipeak structure of the emission for such asymmetric ring structures resulting from spatially separated, yet interconnected quantum well systems. Charge carrier dynamics induced by a surface acoustic wave are resolved and prove efficient carrier exchange on native, subnanosecond time scales within the heterostructure. Experimental findings are corroborated by theoretical modeling, which unambiguously show that electrons and holes localize on facets where the quantum well is the thickest and that even minute deviations of the perfect hexagonal shape strongly perturb the commonly assumed 6-fold symmetric ground state.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.9b01028