Engineering a Balanced Acetyl Coenzyme A Metabolism in Saccharomyces cerevisiae for Lycopene Production through Rational and Evolutionary Engineering
Saccharomyces cerevisiae is increasingly being used for the production of chemicals derived from acetyl coenzyme A (acetyl-CoA). However, the inadequate supply of cytosolic acetyl-CoA often leads to low yields. Here, we developed a novel strategy for balancing acetyl-CoA metabolism and increasing th...
Saved in:
Published in | Journal of agricultural and food chemistry Vol. 70; no. 13; pp. 4019 - 4029 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
06.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Saccharomyces cerevisiae is increasingly being used for the production of chemicals derived from acetyl coenzyme A (acetyl-CoA). However, the inadequate supply of cytosolic acetyl-CoA often leads to low yields. Here, we developed a novel strategy for balancing acetyl-CoA metabolism and increasing the amount of the downstream product. First, the combination of acetaldehyde dehydrogenase (eutE) and acetoacetyl-CoA thiolase (AtoB) was optimized to redirect the acetyl-CoA flux toward the target pathway, with a 21-fold improvement in mevalonic acid production. Second, pathway engineering and evolutionary engineering were conducted to attenuate the growth deficiency, and a 10-fold improvement of the maximum productivity was achieved. Third, acetyl-CoA carboxylase (ACC1) was dynamically downregulated as the complementary acetyl-CoA pathway, and the yield was improved more than twofold. Fourth, the most efficient and complementary acetyl-CoA pathways were combined, and the final strain produced 68 mg/g CDW lycopene, which was among the highest yields reported in S. cerevisiae. This study demonstrates a new method of producing lycopene products by regulating acetyl-CoA metabolism. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-8561 1520-5118 1520-5118 |
DOI: | 10.1021/acs.jafc.2c00531 |