Technical, Economic, and Environmental Comparison of Closed-Loop Recycling Technologies for Common Plastics

Over 400 million metric tons of plastic waste are generated globally each year, resulting in pollution and lost resources. Recycling strategies can recapture this wasted material, but there is a lack of quantitative and transparent data on the capabilities and impacts of these processes. Here, we de...

Full description

Saved in:
Bibliographic Details
Published inACS sustainable chemistry & engineering Vol. 11; no. 3; pp. 965 - 978
Main Authors Uekert, Taylor, Singh, Avantika, DesVeaux, Jason S., Ghosh, Tapajyoti, Bhatt, Arpit, Yadav, Geetanjali, Afzal, Shaik, Walzberg, Julien, Knauer, Katrina M., Nicholson, Scott R., Beckham, Gregg T., Carpenter, Alberta C.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Over 400 million metric tons of plastic waste are generated globally each year, resulting in pollution and lost resources. Recycling strategies can recapture this wasted material, but there is a lack of quantitative and transparent data on the capabilities and impacts of these processes. Here, we develop a data set of material quality, material retention, circularity, contamination tolerance, minimum selling price, greenhouse gas emissions, energy use, land use, toxicity, waste generation, and water use metrics for closed-loop polymer recycling technologies, including mechanical recycling and solvent-based dissolution of polyethylene, polyethylene terephthalate (PET), and polypropylene, as well as enzymatic hydrolysis, glycolysis, and vapor methanolysis of PET. Mechanical recycling and PET glycolysis display the best economic (9%–73% lower than competing technologies) and environmental (7%–88% lower) performances, while dissolution, enzymatic hydrolysis, and methanolysis provide the best recyclate material qualities (2%–27% higher). We identify electricity, steam, and organic solvents as top process contributors to these metrics and apply sensitivity and multicriteria decision analyses to highlight key future research areas. The estimates derived in this work provide a quantitative baseline for comparing and improving recycling technologies, can help reclaimers identify optimal end-of-life routes for given waste streams, and serve as a framework for assessing future innovations.
Bibliography:AC36-08GO28308
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
ISSN:2168-0485
2168-0485
DOI:10.1021/acssuschemeng.2c05497