Ursolic Acid, a Novel Liver X Receptor α (LXRα) Antagonist Inhibiting Ligand-Induced Nonalcoholic Fatty Liver and Drug-Induced Lipogenesis
Nonalcoholic fatty liver disease (NAFLD) is a very common liver disease, and its incidence has significantly increased worldwide. The liver X receptor α (LXRα) is a multifunctional nuclear receptor that controls lipid homeostasis. Inhibition of LXRα transactivation may be beneficial for NAFLD and hy...
Saved in:
Published in | Journal of agricultural and food chemistry Vol. 66; no. 44; pp. 11647 - 11662 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
07.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Nonalcoholic fatty liver disease (NAFLD) is a very common liver disease, and its incidence has significantly increased worldwide. The liver X receptor α (LXRα) is a multifunctional nuclear receptor that controls lipid homeostasis. Inhibition of LXRα transactivation may be beneficial for NAFLD and hyperlipidemia treatment. Ursolic acid (UA) is a plant triterpenoid with many beneficial effects; however, the mechanism of its action on LXRα remains elusive. We evaluated the effects of UA on T0901317 (T090)-induced LXRα activation and steatosis. UA significantly decreased the LXR response element and sterol regulatory element-binding protein-1c (SREBP-1c) gene promoter activities, mRNA, protein expression of LXRα target genes, and hepatic cellular lipid content in a T090-induced mouse model. A molecular docking study indicated that UA bound competitively with T090 at the LXRα ligand binding domain. UA stimulated AMP-activated protein kinase (AMPK) phosphorylation in hepatic cells and increased corepressor, small heterodimer partner-interacting leucine zipper protein (SMILE) but decreased coactivator, steroid receptor coactivator-1 (SRC-1) recruitment to the SREBP-1c promoter region. In contrast, UA induced SRC-1 binding but decreased SMILE binding to reverse cholesterol transport-related gene promoters in intestinal cells, increasing lipid excretion from intestinal cells. Additionally, UA reduced valproate-induced LXRα mediated and rifampin-induced pregnane X receptor mediated lipogenesis, offering potential treatments for drug-induced hepatic steatosis. Thus, UA displays liver specificity and can be selectively repressed while RCT stimulation by LXRα is preserved and enhanced. This is a novel therapeutic option to treat NAFLD and may be helpful in developing LXR agonists to prevent atherosclerosis. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-8561 1520-5118 1520-5118 |
DOI: | 10.1021/acs.jafc.8b04116 |