Hydraulic Reconstruction of the 1818 Giétro Glacial Lake Outburst Flood
In the spring of 1818, ice avalanches from the Giétro Glacier created an ice dam, which in turn formed a glacial lake in the Drance Valley (Canton of Valais, Switzerland). Today, its maximum volume is estimated to have been 25×106 m3. Cantonal authorities commissioned an engineer named Ignaz Venetz...
Saved in:
Published in | Water resources research Vol. 55; no. 11; pp. 8840 - 8863 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In the spring of 1818, ice avalanches from the Giétro Glacier created an ice dam, which in turn formed a glacial lake in the Drance Valley (Canton of Valais, Switzerland). Today, its maximum volume is estimated to have been 25×106 m3. Cantonal authorities commissioned an engineer named Ignaz Venetz to mitigate the risk of the ice dam's failure. He supervised the construction of a tunnel through which a large volume of water was drained as the lake rose (9×106 m3 according to his estimates and 11×106 m3 according to our model). After 2.5 days of slow drainage, the ice dam failed on 16 June 1818 and caused major flooding in the Drance Valley up to 40 km downstream, resulting in about 40 deaths. Venetz's lake monitoring notes, numerous testimonies gathered in the disaster's aftermath, and our field survey have made it possible to collect a wealth of information on this event, which is one of the world's major documented glacial lake outburst floods. Reconstructing major outburst floods remains challenging because not only do they involve enormous volumes of water spreading over long distances but they are also associated with additional physical processes such as massive erosion; intense transport of ice, sediment, and debris; and damage to vegetation and buildings. This paper attempts to reconstruct the 1818 Giétro flood by focusing on its water component. We develop a simple model to estimate the initial hydrograph during the slow drainage and failure phases. The flood's features are deduced by solving the shallow‐water equations numerically. The computational framework involves six free parameters, of which five are constrained by physical considerations. Using iterative manual parameter adjustments, we matched the numerical simulations to the historical data. We found that the peak discharge was close to 14,500 m3/s, the flood's front velocity was about 6 m/s, and flow depth varied considerably along the River Drance's bed (from 30 m just downstream of the ice dam to 2 m on the alluvial fan, 24 km west of the dam). To achieve a good agreement between computations and historical data, we had to select a high value for the Manning friction coefficient n (with n as large as 0.08 s/m1/3). As the Drance Valley is narrow, high flow resistance caused the flood's leading edge to behave like a plug, moving at a fairly constant velocity, with little dependence on what happened behind it. This result may explain why a simple flood routing model is able to reproduce the flood's features, because in an Alpine valley, a lateral spreading of the water volume is limited.
Plain Language Summary
Every year, natural and man‐made dams fail and cause flooding. For public authorities, estimating the risk posed by dams is essential to good risk management. Efficient computational tools are required for analyzing flood risk. Testing these tools is an important step toward ensuring their reliability and performance. Knowledge of major historical floods makes it possible, in principle, to benchmark models, but because historical data are often incomplete and fraught with potential inaccuracies, validation is seldom satisfactory. Here we present one of the few major historical floods for which information on flood initiation and propagation is available and detailed: the Giétro flood. This flood occurred in June 1818 and devastated the Drance Valley in Switzerland. In the spring of that year, ice avalanches blocked the valley floor and formed a glacial lake, whose volume is today estimated at 25×106 m3. The local authorities initiated protection works: A tunnel was drilled through the ice dam, and about half of the stored water volume was drained in 2.5 days. On 16 June 1818, the dam failed suddenly because of significant erosion at its base; this caused a major flood. This paper presents a numerical model for estimating flow rates, velocities, and depths during the dam drainage and flood flow phases. The numerical results agree well with historical data. The flood reconstruction shows that relatively simple models can be used to estimate the effects of a major flood with good accuracy.
Key Points
The 1818 Giétro flood was one of the world's major glacial lake outburst floods in historical times
We apply a simple computational framework to reconstruct the initial hydrograph and flood motion
Flow resistance was significant, presumably because of intense sediment and debris transport |
---|---|
ISSN: | 0043-1397 1944-7973 |
DOI: | 10.1029/2019WR025274 |